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Abstract

A large stretch of the east coast of Australia experienced unprecedented rain-

fall and flooding over a two-week period in early 2022. It is difficult to reliably

estimate the likelihood of such a rare event from the relatively short observa-

tional record, so an alternative is to use data from an ensemble prediction sys-

tem (e.g., a seasonal or decadal forecast system) to obtain a much larger

sample of simulated weather events. This so-called ‘UNSEEN’ method has

been successfully applied in several scientific studies, but those studies typi-

cally rely on a single prediction system. In this study, we use data from the

Decadal Climate Prediction Project to explore the model uncertainty associated

with the UNSEEN method by assessing 10 different hindcast ensembles. Using

the 15-day rainfall total averaged over the river catchments impacted by the

2022 east coast event, we find that the models produce a wide range of likeli-

hood estimates. Even after excluding a number of models that fail basic fidelity

tests, estimates of the event return period ranged from 320 to 1814 years. The

vast majority of models suggested the event is rarer than a standard extreme

value assessment of the observational record (297 years). Such large model

uncertainty suggests that multi-model analysis should become part of the stan-

dard UNSEEN procedure.
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1 | INTRODUCTION

Extreme rainfall and significant flooding affected the east
coast of Australia from 22 February to 9 March 2022. The
heavy rains began in south-east Queensland and north-
east New South Wales during the last week of February
and continued further south into eastern New South

Wales in early March. Numerous multi-day rainfall
records were broken over the two-week period and many
rivers peaked at record (in north-east New South Wales
especially) or near-record levels (Australian Bureau of
Meteorology, 2022). Twenty-two people are known to
have died during the disaster and as of August 2023 it
had caused AU$6 billion in insured damages, surpassing
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the 1999 Sydney hailstorm as the costliest extreme
weather event in Australia's history (Insurance Council
of Australia, 2023).

In the aftermath of unprecedented extreme weather,
there is often interest from policymakers, contingency
planners and insurers in understanding the probability of
experiencing such an event. Our observational records typ-
ically only span a century or so, which is well short of the
many thousands of years of data required to adequately
constrain likelihood estimates (Risbey et al., 2023). In an
attempt to address this small sample problem, the research
community has turned to large model ensembles. The
UNprecedented Simulated Extremes using ENsembles
(UNSEEN) approach has been used to assess the likeli-
hood of unprecedented events in a wide range of contexts
including monthly wintertime rainfall (Thompson
et al., 2017), daily summertime rainfall (Kent et al., 2022)
and summertime heat (Kay et al., 2020) in the
United Kingdom; monthly summertime heat in south-east
China (Thompson et al., 2019); drought in the north-east
farming region of China (Kent et al., 2019); summer mon-
soon rain in India (Jain et al., 2020; Jain & Scaife, 2022);
severe water stress across major global maize producing
regions (Kent et al., 2017); flooding in the Amazon River
basin (Kelder, Wanders, et al., 2022); concurrent extreme
drought and fire weather in south-east Australia (Squire
et al., 2021); wet season rain in northern Brazil (Kay
et al., 2022); El Niño and La Niña events (Merryfield &
Lee, 2023); and sudden stratospheric warming in the
Southern Hemisphere (Wang et al., 2020). It has also been
used to look at trends in 3-day rainfall extremes in western
Norway (Kelder et al., 2020) and growing season tempera-
tures in South Africa (Bradshaw et al., 2022).

Now that the UNSEEN approach has been applied by
a number of different authors in a variety of different
contexts, it is possible to identify the common analysis
steps involved (Kelder, Marjoribanks, et al., 2022). The
process starts by defining the event/metric of interest and
selecting a large ensemble dataset to analyse. Initialised
ensemble predictions (i.e., forecast or hindcast datasets)
are usually preferred because they typically involve a
large number of ensemble members and simulate recent
decades many times over (often using multiple initialisa-
tion dates per year). In contrast, CMIP-style historical
experiments typically have fewer ensemble members and
extend back to the mid-to-late 1800s, which can be prob-
lematic if there is a strong anthropogenic trend in the
variable of interest. Forecast systems including the Met
Office Decadal Prediction System (DePreSys3; Dunstone
et al., 2016), European Centre for Medium-Range
Weather Forecasts seasonal forecast system (SEAS5;
Johnson et al., 2019) and Commonwealth Science and
Industrial Research Organisation Climate Analysis

Forecast Ensemble (CAFE; O'Kane et al., 2021a, 2021b)
have all been used in UNSEEN studies. The type of event
may inform the choice of forecast dataset and vice versa;
for instance, an event of short duration over a small spa-
tial area lends itself to a higher resolution dataset (i.e., a
seasonal forecast system), whereas drought events need
longer simulations to avoid issues of dependence (i.e., a
decadal forecast system). Once an appropriate metric has
been defined and calculated from the large ensemble
dataset, an evaluation of the independence, stability and
fidelity of that metric is conducted and (if necessary)
steps are taken to resolve any detected issues (Kelder,
Marjoribanks, et al., 2022). Depending on the situation,
these steps might include removing early lead times to
resolve independence or stability issues, bias correction
to resolve fidelity issues, or a decision not to proceed with
the analysis if the issues cannot be satisfactorily resolved.

While multi-model analysis is common-place in cli-
mate projections science, most UNSEEN studies to-date
have analysed a single large ensemble. If they do use mul-
tiple models, samples from all models have been pooled to
produce a single super ensemble (Jain & Scaife, 2022; Kent
et al., 2022). This means the structural model uncertainty
(Knutti et al., 2010) associated with likelihood estimates
derived from UNSEEN analysis is largely unknown. The
Decadal Climate Prediction Project (DCPP; Boer
et al., 2016) contribution to the Coupled Model Intercom-
parison Project Phase 6 (CMIP6; Eyring et al., 2016) pro-
vides a new opportunity to explore structural model
uncertainty. With over a dozen modelling centres partici-
pating in the DCPP, it could be a valuable resource for the
UNSEEN community. In this study, we apply the
UNSEEN method to estimate the likelihood of the extreme
rainfall event along the east coast of Australia in late
February and early March 2022. We use the DCPP dataset
to perform a multi-model analysis in an attempt to under-
stand how likelihood estimates can vary depending on the
modelling system used. The paper is structured according
to the steps involved in an UNSEEN analysis: Section 2
defines the extreme event of interest, Section 3 describes
the selected large ensembles, Section 4 presents the evalu-
ation of those large ensembles and Section 5 presents the
results of the likelihood analysis.

2 | EVENT DEFINITION

Over the 15-day period from 23 February to 9 March
2022, significant rainfall totals were observed east of the
Great Dividing Range all the way from the Sunshine
Coast in Queensland southwards to the border between
Victoria and New South Wales. In order to capture the
full temporal and spatial extent of the event in one simple
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metric, we decided to aggregate daily precipitation data
by calculating the annual (September to August) maxi-
mum consecutive 15-day total averaged over the river
catchment areas impacted by the event. Using the topo-
graphic drainage divisions and river regions defined by
the Australian Hydrological Geospatial Fabric (Atkinson
et al., 2008), this represented all river regions in the
South East Coast (NSW) drainage division and
the regions in the North East Coast division south of
(and including) the Burrum River and Fraser Island
regions (Figure 1a). Not only do these river regions
closely match the area of highest rainfall totals during
the event of interest, but also they are highly relevant to
the widespread flooding that was experienced. The use of
a non-standard September to August annual calendar
reduced the chances of splitting a significant 15-day rain-
fall event over 2 years, since that is the driest time of year
averaged over the area of interest. Following the nomen-
clature used in the climate extremes literature, we abbre-
viate the metric to Rx15day.

The Australian Gridded Climate Data (AGCD) data-
set (formerly called the Australian Water Availability
Project dataset) is the Australian Bureau of Meteorology's
official dataset for climate analyses. The daily rainfall
data are available on a national 5-km spatial grid from

1900 to present day (Jones et al., 2009). Calculation of the
Rx15day metric using AGCD data reveals that the 2022
Rx15day event of 410 mm was indeed unprecedented in
the observational record, far exceeding the previous
record of 289 mm in February 2020 (Figure 2a). The
event occurred during the most common time of the year
for Rx15day events (February/March; Figure 2b). Using
the Met Office Hadley Centre's sea ice and sea surface
temperature (HadISST; Rayner, 2003) dataset to calculate
the monthly Niño3.4 (5 N–5S, 170–120 W) anomaly for
the month corresponding to the final day of each
Rx15day event, it appears that large Rx15day totals have
historically occurred during both La Niña and neutral
phases of the El Niño Southern Oscillation (ENSO) but
not during the El Niño phase (Figure 2c).

The extreme rainfall over the 15-day period of interest
was associated with a blocking high-pressure system over
New Zealand, which assisted the formation of a series of
slow-moving low-pressure systems within a trough that
fed a large volume of warm moist air from the Coral and
Tasman seas into eastern Australia. The subsequent
development of a series of deep low-pressure systems
delivered intense rain to east and south-east New South
Wales (Australian Bureau of Meteorology, 2022). We see
the blocking high and onshore flow clearly (Figure 1b) in

FIGURE 1 Rainfall totals and average circulation over the 15-day period 23 February to 9 March 2022. The river regions used in

calculating the Rx15day metric are shown in orange (panel a). Data sources are AGCD (panel a) and BARRA-R2 (panel b) respectively.
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data from the new second version of the Bureau of Mete-
orology Atmospheric high-resolution Regional Reanalysis
for Australia (BARRA-R2; Su et al., 2019, 2022). Those
general features (block and trough) are also present for
the several highest Rx15day events in the observational
record (not shown).

3 | LARGE ENSEMBLE DATA

Given that complete years of data are required to calcu-
late an annual metric like Rx15day, the most appropriate
data source for the study was decadal (as opposed to sea-
sonal) forecast data. At the time of writing, a total of nine
DCPP models (Table 1) had submitted daily precipitation

data (required to calculate the Rx15day metric) for the
‘dcppA-hindcast’ experiment (Boer et al., 2016). Each
submission typically involved running a 10–20-member
ensemble of 10-year hindcasts initialised once annually
from 1960 to the present day (i.e., around 2017 when
most modelling groups performed the DCPP experi-
ments). The spatial resolution of the DCPP models ranges
from approximately 0.6 degrees of latitude by 0.8 degrees
of longitude (HadGEM3-GC31-MM) to 2.5 degrees of lati-
tude and longitude (CanESM5). The model resolutions in
Table 1 are expressed as the number of model grid cells
that overlap (by 10% of the grid cell area or more) with
the region of interest, which were the cells selected in
spatially aggregating the data to calculate Rx15day (the
coarser resolution models have a smaller number of

FIGURE 2 Rx15day in the 122 year (1901–2022) AGCD observational record. Niño 3.4 values above 0.65C and below �0.65C are

commonly used as thresholds to designate a El Niño and La Niña events respectively (panel c). The 95% confidence interval (CI) on the

return period curve was derived from 10,000 bootstraps of the observational record (panel d). It spans 87 to 6451 years for the 410-mm event

observed in February/March 2022.
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cells). The sample size (i.e., number of Rx15day values) for
each DCPP model ranged from 2400 to 10,260 depending
on the precise number of ensemble members, hindcast
length, initialisation years and the results of the indepen-
dence test (see below). In order to include a much larger
ensemble in the analysis, we also used data from the
CAFE hindcast dataset which comprises 10-year long,
daily forecasts, each with 96 ensemble members, initia-
lised at the beginning of every May and November over
the period 1995–2020 (for an ensemble size of 34,944).

4 | EVALUATION

In order to provide a reliable estimate of the likelihood of
the unprecedented 2022 event, the Rx15day samples from
a given model must be stable, independent and realistic
estimates of the real world (Kelder, Marjoribanks,
et al., 2022). Stability here refers to an absence of system-
atic changes in the estimates of Rx15day as the forecasts
progress in time (i.e. an absence of model drift; Irving
et al., 2021). The time elapsed since the beginning of a
forecast is known as the ‘lead time’ and stability is neces-
sary for pooling samples across lead times. With respect to
independence, any dependence between model samples
inflates the sample size without adding new information
and can arise at short lead times because the ensemble
forecasts are initialised from similar initial conditions.
Finally, the realism (or fidelity) of a simulation refers to its
ability to simulate Rx15day events both in terms of their
observed statistical properties and also the relevant physi-
cal processes (e.g., the meteorological features typically
associated with such events).

It was also necessary to assess the stationarity of the
Rx15day metric because if there were strong trends in

time (as opposed to lead time; e.g., due to anthropogenic
forcing), it might be necessary to limit the likelihood
analysis to model years close to 2022 (i.e., by discarding
the earlier decades from DCPP submissions that start
around 1960) or de-trend the data prior to use. Strong
trends might also mean that fidelity tests (i.e., comparing
observational and model data) need to be performed over
a common time period. Fewer model samples are avail-
able for calendar forecast years towards the start and end
of each model forecast period (because these years have
fewer lead times available), so if the data are highly non-
stationary, it can be necessary to also limit fidelity and
likelihood assessments to model years that are equally
sampled (Squire et al., 2021).

4.1 | Stability and stationarity

In the context of UNSEEN analysis, the most common
method of assessing model stability is to check that the
probability density functions for each lead time (for
the metric of interest) are similar and that the extreme
value distributions of the individual lead times fall within
the uncertainty range of the distribution for all lead times
pooled together (e.g., Kelder et al., 2020). We find that
the CAFE and DCPP models pass these simple checks
(see Figure 3a,b for a representative model and
Figures S1–10a,b for all models), meaning that the model
simulations are sufficiently stable to allow the pooling of
data across all lead times without any de-drifting or
removal of problematic lead times. A similar approach
can be used to assess model stationarity, grouping the
data by time (e.g., by decade) as opposed to by lead time.
In the case of our Rx15day metric, all of the models were
stationary with respect to time (Figures 3c,d and S1–10c,
d). Not only is this finding useful for deciding whether
de-trending or the use of restricted time periods is
required, but it also suggests that climate change has not
substantially altered the likelihood of extreme Rx15day
values over the historical period. This is consistent with
global gridded analyses of the commonly used Rx5day
metric, which show no significant trend for grid points
along the east coast of Australia in observations (Dunn
et al., 2020) or in the CMIP6 ensemble until much later
this century in the higher emission scenarios (Almazroui
et al., 2021).

4.2 | Independence

To determine the lead time at which the ensemble mem-
bers can be considered independent, we follow Squire
et al. (2021) and test whether the correlation between

TABLE 1 Model characteristics.

Model Sample size Resolutiona

CAFE 34,944 11

CanESM5 10,260 6

CMCC-CM2-SR5 3600 24

EC-Earth3 7830 51

HadGEM3-GC31-MM 5310 53

IPSL-CM6A-LR 5130 12

MIROC6 5310 18

MPI-ESM1-2-HR 5310 31

MRI-ESM2-0 2400 25

NorCPM1 9440 9

aResolution refers to the number of grid cells that overlap with the analysis
region.
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ensemble members at a given lead time is sufficiently close
to zero. At each lead time, the HadGEM3-GC31-MM sub-
mission to DCPP (for instance) provides 10 (members),
59-year timeseries of Rx15day (spanning, e.g., 1961–2019
at 1-year lead, or 1965–2023 at 5-year lead). We define our
test statistic, ρt, for each lead time as the mean Spearman
correlation in time between all combinations of the
10 ensemble members (of which there are 45: member
1 with 2, member 1 with 3, etc). Significance of ρt is esti-
mated using a permutation test, whereby 10,000 sets of
10� 59 points are randomly drawn from the complete
model dataset to produce 10,000 estimates of the mean
Spearman correlation. Because these estimates are con-
structed from randomly drawn data, they represent the
distribution of mean correlation values for uncorrelated
data (i.e., the null distribution). Ensemble members are

considered to be dependent (i.e., the null hypothesis of
independence is rejected) at a given lead time if ρt falls
outside of the 95% confidence interval calculated from
the randomly sampled distribution. Samples from depen-
dent lead times (see Figure S11) were removed prior to
fidelity and likelihood assessment.

4.3 | Fidelity

A number of statistical tests are used in the UNSEEN lit-
erature to assess how well a forecast ensemble simulates
the event/metric of interest. The most common is the so-
called bootstrap or moments test, whereby the model
data are bootstrapped into a large number of
(e.g., 10,000) series of equal length to the observed

FIGURE 3 Stability and stationarity evaluation for the EC-Earth3 model. Return period curves (panels b and d) were derived from a

GEV fit to the data. Grey shading illustrates the 95% confidence intervals of the distribution of the pooled lead times, bootstrapped to

timeseries of similar length to the individual lead times with n = 1000.
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timeseries and the empirical moments of each series
(mean, standard deviation, skewness and kurtosis) are
calculated (e.g., Kelder et al., 2020; Thompson
et al., 2017). If the moments of the observed timeseries
fall within the 95% confidence intervals for the statistics
derived from the bootstrapped series, the model is consid-
ered to have passed the test. In addition to these four
basic empirical moments, some authors have also calcu-
lated the shape, location and scale parameters from a
Generalised Extreme Value (GEV) distribution fit (using
maximum likelihood estimation of the distribution
parameters) to the data (Kelder et al., 2020; Kent
et al., 2022). In order to avoid issues associated with mul-
tiple testing (Wilks, 2011), other authors prefer a single
test score comparing the modelled and observed data.
The Kolmogorov–Smirnov test (e.g., Squire et al., 2021)
and Anderson-Darling test (e.g., Kent et al., 2022) have
been used to assess how likely it is that the observed and
model samples were drawn from the same (but
unknown) probability distribution. A test p-value of
greater than 0.05 is typically taken to indicate that the
null hypothesis (that the two samples are from the same
population) cannot be rejected, meaning the model data
are sufficiently similar to observations to be used in like-
lihood analysis. Each of these tests/approaches can give
slightly different insights, so we apply all of them to our
10 models.

We find that all 10 models fail the moments test in a
similar way, with the observed mean and standard devia-
tion lying beyond the upper limit of the bootstrapped
95% confidence interval (see Figure 4 for a representative
model and Figures S12-21 for all models). In other words,
the distribution of modelled Rx15day values in all models
was too dry and lacked variance, which meant the
observed GEV location (closely linked to the mean) and
scale (linked to standard deviation) parameters also lay
beyond the 95% confidence interval. In fact, only one
model (MIROC6) simulated an Rx15day value greater
than the 410 mm observed in 2022. All the models bar
one (CMCC-CM2-SR5) failed the Kolmogorov–Smirnov
and Anderson-Darling tests (Table S1). Aside from the
general underestimation of the observed mean and vari-
ance, the shape of the model Rx15day distribution was
relatively well simulated, with all models passing the
moments tests relating to skewness, kurtosis and the
GEV shape parameter (Figures 4 and S12-21).

The most common bias correction method used in
the UNSEEN literature to overcome model bias
in extreme precipitation metrics is simple multiplicative
mean scaling, whereby the model data (i.e., the calcu-
lated metric of interest; in this case Rx15day) is multi-
plied by the ratio of the average observed and modelled
metric values. Since the model simulations were found to

be stable and there was no significant trend in the obser-
vations over time, it was appropriate to calculate the
average observed value over the entire observational
record (i.e., 1901–2022) and average model value over all
initialisation dates, lead times and ensemble members.
When the ratio of those two values was used to correct
the modelled Rx15day values, all of the models passed
the Kolmogorov–Smirnov and Anderson-Darling tests
(Table S2). Performance on the mean and standard devia-
tion components of the moments test was also generally
much improved, although the standard deviation of a few
of the models (CMCC-CM2-SR5, IPSL-CM6A-LR,
MIROC6, NorCPM1) still lay beyond the upper bound of
the 95% confidence interval (Figures 4 and S12-21). The
acceptable shape of the model distribution was also
retained after the bias correction and most of the models
simulated at least one (and in some cases several)
Rx15day values greater than 410 mm. The corrected and
uncorrected distributions for each model are shown in
Figure 5a-j.

Going beyond statistical tests, some UNSEEN studies
also conduct a process-based analysis to see whether the
models simulate the basic meteorology and other charac-
teristics (e.g., seasonality) associated with metric of inter-
est (e.g., Kelder, Wanders, et al., 2022). Similar to the
observed unprecedented event in 2022 (Figure 2b),
the most extreme Rx15day events in all the models we
assessed were associated with an onshore flow along the
coast of New South Wales and south-east Queensland
(Figure 6a–j). Many of the models also simulated the
observed blocking surface high near New Zealand
(Figure 6b,d,e,g,h,j), while a few simulated a deep surface
low off the coast of Queensland (Figure 6c,e,j) that was
not a feature of the observed 2022 event. Most of the
DCPP models only archived surface variables, so it was
not possible to conduct a detailed analysis of the upper-
level circulation features associated with Rx15day events.
With respect to annual timing, all the models do a rea-
sonably good job of capturing the tendency for Rx15day
events to occur during the summer months (Figure S22).
Most of the models show a tendency for Rx15day events
to be slightly more extreme during La Niña events and
less extreme during El Niño events (Figure S23), which is
broadly consistent with the observations (Figure 2c).

5 | LIKELIHOOD ANALYSIS

The ultimate aim of any UNSEEN analysis is to compare
and contrast a likelihood estimate for an unprecedented
event obtained from the (relatively short) observational
record with that obtained from a large model ensemble/s.
Such estimates are typically calculated by fitting a GEV

IRVING ET AL. 7 of 14Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2024, 3, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2217 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [25/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://rmets.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fmet.2217&mode=


FIGURE 4 Moments tests for

the MRI-ESM2-0 model. Each

panel shows the histogram (bars)

and 95% confidence interval

(dashed lines) derived from 1000

bootstrap samples of 122 years

(the length of the observational

Rx15day record) from the model

data. The sign convention for the

GEV shape parameter is such that

negative and positive values

correspond to a Frechet and

reversed Weibull distribution

respectively.
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to the data; the survival function corresponding to the
GEV fit can be used to obtain an estimate of the event
probability. That probability is typically communicated
as a return period, which is the estimated average time
between events. For instance, an event threshold that is

only exceeded in 5 out of 100 annual samples has a prob-
ability of 0.05 or a return period of 20 years. When work-
ing with small samples like the observational record,
estimation of the return period for an unprecedented
event (i.e., an event way out in the tail of the distribution)

FIGURE 5 Probability distributions

(histograms) and associated GEV fits

(solid curves) for uncorrected model

data, multiplicative bias-corrected

model data and the full 122-year

observational record. The number

printed in each panel corresponds to the

estimated return period for a 410-mm

event from the GEV fit to the bias-

corrected model data (see Figure S24 for

the uncertainty bounds on those return

period estimates).
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FIGURE 6 15-day mean sea level pressure for the most extreme Rx15day event from each model. Precipitation values have not been

bias-corrected.
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is complicated by the decision of whether or not to
include the record event in the sample (Miralles &
Davison, 2023). Including the unprecedented event will
tend to cause an overestimation of the probability (under-
estimation of the return period) of the event and leaving
out the unprecedented event tends to produce an under-
estimation of the probability (overestimation of the
return period). In the case of the Rx15day values calcu-
lated from the AGCD dataset, a GEV fit to the entire
122-year record produces a likelihood estimate of
297 years for the 410-mm event that occurred in
February/March 2022 (Figure 2d). A fit to a 121-year
sample that excludes the record value from 2022 pro-
duces an estimate of 757 years.

For the model comparison, the fidelity evaluation
guides the selection of appropriate data. It is clear from
the various statistical tests we performed that it would
not be appropriate to use uncorrected model data due to

substantial underestimation of the mean and variance of
the Rx15day metric. For the multiplicative bias-corrected
data, the four models that fail the moments test due to
low variance (i.e. CMCC-CM2-SR5, IPSL-CM6A-LR,
MIROC6 and NorCPM1) would be expected to produce
an inflated return period, so estimates obtained from
those data could be excluded or at least treated with scep-
ticism. Further model elimination could be considered
on the basis of the process-based fidelity assessment, but
in this case, the models did a relatively good job of cap-
turing the Rx15day seasonality, relationship with ENSO
and characteristic mean sea level pressure pattern. For
the remaining six models, the return period for a 410 mm
event obtained from a GEV fit to the multiplicative bias-
corrected data ranges from 320 to 1814 years, with a
mean of 980 years (Figures 5 and S24). All the models
produce longer return period estimates than the GEV fit
to the full observational record, and all but two produce
longer estimates than the 121 year observational sample
(Figure 7).

6 | DISCUSSION

The UNSEEN approach is becoming an increasingly
common method for estimating the likelihood of unprec-
edented climatic events, such as the extreme rainfall that
occurred along the east coast of Australia from
22 February to 9 March 2022. The UNSEEN studies to-
date have tended to rely on a single initialised ensemble.
We make use of the DCPP dataset to perform a multi-
model UNSEEN assessment of the extreme east coast
rainfall and find a large spread in likelihood estimates
across 10 different hindcast ensembles. The standard
UNSEEN model fidelity assessment process allowed for
the potential elimination of four of the 10 models, with
the likelihood estimates from the remaining models rang-
ing from a return period of 320 to 1814 years (with a
mean of 980 years). The vast majority of the models sug-
gest that the unprecedented 2022 event is rarer than a
standard extreme value assessment of the 122-year obser-
vational record would suggest, which ranges from 297 to
757 years depending on whether the record event is
included in the sample. A caveat on the model-derived
estimates relates to the fact that all the models were
biased in a similar way (they all underestimate the
observed mean and variance), which may have mani-
fested as a common over/underestimation of the return
period. A detailed analysis of the impact of different bias
correction methodologies and decisions will be a focus of
future work, but for now suffice to say that a higher
degree of confidence would be attached to estimates
derived from a collection of models with a range of

FIGURE 7 GEV fits to (multiplicative) bias-corrected Rx15day

model data (panel a) and corresponding return periods (panel b).

The grey dashed line indicates the observed record event of

410 mm.
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different bias profiles or better still models that did not
require any bias correction whatsoever.

Attempts have been made in recent years to define a
standard process for UNSEEN analysis (Kelder,
Marjoribanks, et al., 2022). The large model uncertainty
demonstrated in our analysis suggests that it would be
worthwhile to consider adding multi-model analysis as
part of that standard process, just as it is in other areas
such as climate projections science (Knutti et al., 2010).
The fidelity tests applied in UNSEEN studies can be used
as a basis for including or excluding (or at least treating
with scepticism) particular models, although different
objective tests can lead to different outcomes. For instance,
in our analysis of bias-corrected model data all 10 models
passed the Kolmogorov–Smirnov and Anderson-Darling
tests, but only six passed the moments test. There is an
even greater degree of subjectivity involved with making
model selections on the basis of physically based tests of
model fidelity such as assessing the simulated meteorology
(Kelder, Wanders, et al., 2022). Given this subjectivity, we
decided not to exclude any models unless their physical
representation of Rx15day events was very clearly and
obviously lacking. Besides reporting the range of model
likelihood estimates, it may be desirable to provide a cen-
tral estimate such as the multi-model mean. In the climate
projections space, equally weighted multi-model means
tend to outperform means calculated by weighting each
model on some measure of skill/fidelity (Weigel
et al., 2010). An alternative would be to pool data from all
the models and calculate the return period from a single
super ensemble (Jain & Scaife, 2022; Kent et al., 2022).
The impact of mixing different model distributions into
one is unclear and the differing sample sizes between
models would represent a form of weighting, so we
decided not to analyse a super ensemble.

Initiatives like the DCPP that make a large selection
of forecast ensembles easily accessible to the research
community greatly facilitate multi-model UNSEEN anal-
ysis. The application of such datasets to unprecedented
events in different geographic locations using different
model variables and over different temporal and spatial
scales will help to further understand the model uncer-
tainty associated with the UNSEEN approach to likeli-
hood estimation.
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