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Abstract

Accelerated warming and hiatus periods in the long-term rise of Global Mean Surface
Temperature (GMST) have, in recent decades, been associated with the Interdecadal Pacific
Oscillation (IPO). Critically, decadal climate prediction relies on the skill of state-of-the-art
climate models to reliably represent these low-frequency climate variations. We undertake a
systematic evaluation of the simulation of the IPO in the suite of Coupled Model
Intercomparison Project 5 (CMIP5) models. We track the IPO in pre-industrial (control) and all-
forcings (historical) experiments using the IPO tripole index (TPI). The TPI is explicitly aligned
with the observed spatial pattern of the IPO, and circumvents assumptions about the nature of
global warming. We find that many models underestimate the ratio of decadal-to-total variance
in sea surface temperatures (SSTs). However, the basin-wide spatial pattern of positive and
negative phases of the IPO are simulated reasonably well, with spatial pattern correlation
coefficients between observations and models spanning the range 0.4-0.8. Deficiencies are mainly
in the extratropical Pacific. Models that better capture the spatial pattern of the IPO also tend to
more realistically simulate the ratio of decadal to total variance. Of the 13% of model centuries
that have a fractional bias in the decadal-to-total TPI variance of 0.2 or less, 84% also have a
spatial pattern correlation coefficient with the observed pattern exceeding 0.5. This result is
highly consistent across both IPO positive and negative phases. This is evidence that the IPO is
related to one or more inherent dynamical mechanisms of the climate system.

of the IPO is closely related to that of the Pacific
Decadal Oscillation (PDO, Power et al 1999, Folland
et al 2002). The PDO (Mantua et al 1997, Newman
et al 2003) is defined by mainly extratropical North
Pacific sea surface temperatures (SSTs). The IPO is
associated with the evolution of the El Nino-Southern

1. Introduction

The Interdecadal Pacific Oscillation (IPO) is a major
expression of decadal to interdecadal variability
centred in, but extending beyond, the Pacific (Folland
et al 1999, Power et al 1999). The temporal variability

© 2017 IOP Publishing Ltd
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Oscillation (ENSO) and its impacts globally (Arblaster
et al 2002, Meehl and Arblaster 2012, Newman et al
2016, 2003, Schneider and Cornuelle 2005). Folland
et al (2002) provided evidence that the influence of the
IPO on the South Pacific Convergence Zone can be
statistically significantly distinguished from that of
ENSO. A distinguishable impact of the IPO from
ENSO is also seen on Australian rainfall (Power et al
1999), agriculture (McKeon et al 2004) and flood risk
(Kiem et al 2003).

Changes in the phase of the IPO in the last century
have been associated with changes in the rate of
anthropogenic global warming (Dai et al 2015,
England et al 2014, Fyfe et al 2016, Kosaka and Xie
2013, Maher et al 2014). Since evidence has been
presented that a causal dynamical relationship exists
between the IPO and periods of acceleration and
slowdown in Global Mean Surface Temperature
(GMST) rise, it is critical that we understand and
model the IPO accurately. Significant research
questions include: Will the IPO shift to its positive
phase in the near future, or has it recently shifted
phase? Will such a shift result in a period of accelerated
surface warming extending beyond the El Nino of
2015-2016? Will particular phases of the IPO change
their frequency in the future? How does decadal
variability influence the determination of the emer-
gence of a climate signal attributable to anthropogenic
influences? (Hawkins et al 2014, King et al 2015, Muir
et al 2013). Critically, none of these questions can be
adequately addressed in the absence of reliable climate
model representations of the IPO.

Decadal climate prediction was a focus of the
Coupled Model Intercomparison Project 5 (CMIP5)
and the Fifth Assessment Report (AR5) of the
Intergovernmental Panel on Climate Change (IPCC)
(Kirtman et al 2013). In CMIP5, several experiments
were designed to initialize climate models with the
observed three dimensional ocean state, in order to
project the evolution of the climate 10 yr into the
future. There is evidence that the two major transitions
of the IPO since 1960 (from negative to positive in the
1970s, and from positive to negative in the late 1990s)
can be simulated in initialized hindcasts (Meehl and
Teng 2012, 2014). Additionally, it has been shown that
climate models initialized in the mid-1990s could have
predicted the late-1990s IPO transition (Meehl et al
2014). A decadal prediction initialised in 2013 shows
an IPO transition to positive occurred in the
2014-2015 timeframe (Meehl et al 2016). Decadal
prediction systems rely on the realistic simulation of
the temporal and spatial characteristics of the climate
system on multiannual to decadal timescales.

Despite these advances and the importance of
skilfully modelling decadal variability, significantly less
attention has been given to the assessment of model
simulations of the IPO and decadal-timescale Pacific
variability than the simulation of ENSO and other
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modes of variability on interannual and sub-annual
timescales. ENSO has been the subject of substantial
modelling and skill-benchmarking efforts (Bellenger
et al 2013, Guilyardi et al 2012, Brown et al 2014). The
PDO and North Pacific decadal variability have also
received significantly more direct attention than the
Pacific-wide IPO. The PDO in the North Pacific has
generally been found to be poorly modelled by the
CMIP3 generation of climate models (Oshima and
Tanimoto 2009, Stoner et al 2009). Models do not
accurately capture North Pacific decadal SST and sea
level pressure (SLP) modes or tropical to extratropical
teleconnections (Furtado et al 2011). There has been a
reported improvement from CMIP3 to CMIP5 in
modelling the PDO and its teleconnection to North
American rainfall (Polade et al2013). PDO spatial and
spectral patterns in the North Pacific in the Palae-
oclimate Modelling Intercomparison Project (PMIP3)
past-millennium forced simulations show some
similarities to the observed patterns (Fleming and
Anchukaitis 2016). However, Kociuba and Power
(2015) concluded that the CMIP5 models underesti-
mate the magnitude of tropical mean sea level pressure
(MSLP) variability on interdecadal time-scales, and
presented evidence that this characteristic is related to
deficiencies in the autocorrelation properties of ENSO
in the models. Power ef al (2016) investigated rates of
surface warming in observations and CMIP5 models
and concluded that over-estimates of simulated
multidecadal warming in some models reduce the
confidence in their long-term projections.

Studies of future projections of the IPO/PDO have
yielded contrasting results. For example, Lapp et al
(2012) documented a projected weak trend towards
more negative PDO phase occurrences in the 21st
century CMIP3 simulations. However, Dong et al
(2014) suggested that increasing greenhouse gases and
aerosols favour the positive phase of the IPO/PDO.
Fang et al (2014) documented other potential changes
to the PDO and its mechanisms under greenhouse
warming, reporting weaker, higher frequency variabil-
ity of the PDO due to faster oceanic baroclinic Rossby
waves. However, there is a large degree of uncertainty
with regards to the future of the IPO/PDO.

Previous studies have used a principal component
analysis (PCA) methodology to identify the IPO/PDO,
with the exception of Dong et al (2014) who used a
North Pacific index to compare Pacific Decadal
Variability (PDV) across model experiments. The
IPO Tripole index (TPI) of Henley et al (2015) is used
in this study, as it incorporates both the North and
South Pacific, presents a systematic, reproducible and
objective metric for the comparison of the IPO across
observed and modelled SST datasets and does not
require detrending of SST data nor any associated
assumptions about the nature of long-term trends.

In addition to these differences to previous studies,
there are important aspects of the temporal and spatial
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evolution of the Pacific-wide IPO that have not yet
been comprehensively studied in climate models; for
example, variance-based persistence metrics, autocor-
relation, IPO event duration and the association
between temporal metrics and spatial patterns.

This study evaluates the spatial and temporal
representation of the IPO in CMIP5 models and
investigates whether or not there is a relationship
between the spatial and temporal characteristics of
each model’s representation of the IPO. Section 2
outlines the data and methods used in this study.
Results are presented in section 3. A summary and
discussion are given in section 4.

2. Data and Methods

This study uses observed SST data from HadISST2.1
from the UK Met Office on a 1° x 1° grid at monthly
resolution, covering 1850-2010 inclusive (Kennedy
et al 2016, Rayner et al 2017), truncated to the period
1911 onwards, yielding 100 yr of observed SST. The
HadISST.2.1 data is constructed in a two-step
process, based on satellite and in-situ data (Kennedy,
in preparation 2016). Firstly, an iterative Bayesian
PCA-based reconstruction method (Ilin and Kaplan
2009) is used to characterise large-scale features of the
SST fields. Secondly, a local optimal interpolation
method adds smaller-scale detail in well-observed
regions (Karspeck et al 2011). Uncertainty is
expressed by drawing representative samples from
both interpolation steps and the bias adjustment
scheme. In this study we use 10 realisations from this
dataset.

The model data used here is comprised of pre-
industrial control (unforced) and historical (all-
forcings, including volcanic eruptions, solar variability
and time-varying anthropogenic emissions) experi-
ments from 39 CMIP5 models (as listed in table S1
available at stacks.iop.org/ERL/12/044011/mmedia) at
monthly resolution. Model preindustrial and histori-
cal runs vary in length from 100 to over 1000 yr, and
some models have multiple realisations. Modelled and
observed SST data (model variable ‘ts’) are re-gridded
to a common 1.5° x 1.5° grid.

We use the IPO Tripole Index (TPI) of Henley et al
(2015) to track the IPO. The index has native units
of °C and has the advantage of being explicitly aligned
with the observed spatial pattern of the IPO. The TPI is
defined as the difference between SST anomalies
(SSTA) averaged over the central equatorial Pacific
(T5, 10°S-10°N, 170°E-90°W) and the average of the
SSTA in the Northwest (T;, 25°N—45°N, 140°E—145°W)
and Southwest Pacific (T3, 50°S-15°S, 150°E-160°W),
as shown in equation (1). The observed time series
and spatial SST correlation pattern are shown in
figure 1. Alternative definitions of the IPO are not
expected to yield significantly different results, given
the strong similarities in the observational period
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between the TPI and PCA-based IPO indices (Henley
et al 2015).

TPl = T, — 0.5(T; + T5) (1)

Spatial composite patterns of the observed and
modelled IPO are identified as the mean unfiltered
SST during strong phases of the IPO (subsequently
referred to as ‘unfiltered’), as identified by periods of
greater than or equal to one standard deviation above
or below the mean of the low-pass filtered TPI (using a
Chebyshev filter with a 13 yr cut-off period,
subsequently referred to as ‘filtered’). The durations
of IPO phases are assessed using run-lengths above
and below the long-term TPI observed or modelled
mean. However, IPO durations of a given phase lasting
less than 5 yr, resulting from brief incursions above or
below the threshold, are omitted from the calculations
of the mean run-length and other statistics in both
observations and models. A caveat to be mentioned
here is that the IPO SST patterns from the model
control runs are entirely internally generated by
construction since there is no variation in external
forcings, while the IPO SST patterns from the 20th
century all-forcings simulations, as well as the
observations used to deduce an observed IPO pattern,
include the effects of external forcings. Since the
response of Pacific SSTs to some external forcings
resembles the IPO, such patterns are not totally
independent, though there is evidence that the IPO is
the dominant pattern of decadal variability in the
Pacific (Meehl et al 2009).

Boxplots of model statistics (figure 2) show the
inter-centennial and inter-model variability, with
statistics computed for each 100 yr block in each
model. Some simulations extend beyond a multiple of
100 yr. In these cases, additional time is included in the
previous sample if shorter than 50 yr, but taken as a
new sample if longer than 50 yr. With model
simulation durations between 100 and 1163 yr, the
boxplots display between one and twelve samples per
model. No detrending is applied to the observed or
modelled TPI data, since the TPI circumvents the need
to detrend SST data (Henley et al 2015). Boxplot
boundaries are set at the 25th and 75th percentiles
(p2s and pys). Outliers are shown as red crosses, and
are defined as samples greater than p;s + 1.5 (p;5 — pas)
or less than p,5 — 1.5 (p75 — p2s). Whiskers are shown at
the extents of the data not considered outliers.

3. Model Performance

Key characteristics of the temporal and spatial
variability of the IPO are assessed using a set of
metrics applied to the TPI time series in the
observations and models. The metrics assess the
variance and persistence characteristics in the models,
as well as the spatial pattern.
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Figure 1. (a) Observed TPI time series (blue = unfiltered, red =

low pass filtered), (b) spatial correlation pattern and three TPI

3.1. Temporal metrics
Here we compare decadal and total TPI variance in the
CMIP5 models to observations. For the total TPI
variability in the preindustrial control runs, 60% (140
of 231) of the simulations show a higher total standard
deviation than the observed TPI, whereas for the
historical simulations 36% (62 of 174) of the
simulations are higher than the mean observed value.
Nevertheless, the CMIP5 model 100 yr replicates span
a large range either side of the observed values (figure 2
(a), unfiltered TPI standard deviation) so it is not
possible to infer a systematic difference between
control and historical runs. Additionally, the obser-
vations represent only one realisation of a process
replicated a number of times in many of the models.
A clearer bias in the models is apparent with
regards to the comparison of low frequency TPI
variability, with the substantial majority of preindus-
trial and historical simulations underestimating the
filtered standard deviation of the TPI (figure 2(b)).
This bias extends to the under-estimation of the ratio
of decadal to total standard deviation in the majority
of models, which is around 0.4 in the observations

(figure 2(c)). The best performing models in terms of
this ratio (modelled inter-quartile range overlaps with
observations) are: ACCESS1-0, ACCESS1-3, CMCC-
CM, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P and
MRI-CGCM3. However, none of the models system-
atically capture all three variance statistics accurately
(all results shown in figure S1).

The annual autocorrelation of the TPI during the
peak ENSO season of Sep—Feb provides an additional
measure of interannual persistence. Despite the clear
variance bias across the models, such a distinct bias is
not evident in the autocorrelation, with the models
being centered on, and spanning a large range around,
the observed lag-one autocorrelation (figure 2(d), and
similarly for lag-two autocorrelation as shown in
figure S2(e)). The number of IPO events per century
and the mean IPO run-length (figures 2(f) and (g))
reveal a bias towards more IPO events per century and
lower mean IPO run-length compared to the available
observations. Observations depict around 6-7 1PO
events per century, and a mean run-length of 14-18 yr.
Power spectra of the North Pacific PDO in PMIP3 past
millennium simulations (Fleming and Anchukaitis

4
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experiments in 39 CMIP5 models. (a) Standard deviation of unfiltered TPI, (b) Standard deviation of low-pass filtered TPI, (¢) Ratio
of filtered to unfiltered standard deviation of the TPI, (d) Lag-one autocorrelation of SONDJF TPI at annual timestep, (e) Number of
IPO events per century, (f) Mean TPI run-length. Boxplot boundaries are set at the 25th and 75th percentiles (p,s and p;s). Outliers
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2016) exhibit broadband peaks at low frequencies,
however few statistically significant spectral peaks
appear above red noise levels.

The IPO behaviour is explored further in the
supplementary section S1, where results are presented
for each of the 3 poles of the TPI (Box 1: North Pacific,
Box 2: Central and Eastern equatorial Pacific, Box 3:
Southwest Pacific). The filtered and unfiltered variance
results for Boxes 1 and 3 are qualitatively similar to the
TPI results, with overestimation of the total variance
and underestimation of the decadal variance. Howev-
er, the models perform significantly better on these
metrics in the equatorial Pacific (Box 2), with a much
lower model spread and no distinct bias in model
variance ratios. The mean IPO run-length and events
per century are better modelled in Box 2 and 3 than in
Box 1, where the run-length duration is under-
estimated. Note however that run-length statistics are
highly sensitive to the threshold and few observed IPO
phases are available (figure S6 shows timeseries and
run-lengths of filtered anomalies in each Box). This
suggests the North Pacific is the potential source of the
mismatch between observed and modelled persistence
in the IPO, which is consistent with studies cited above
that noted similar deficiencies for the PDO (defined
for the North Pacific). However, the observed data are

potentially less reliable in the Southern Hemisphere
due to fewer observations prior to the satellite era
post-1979. We note the brief cool SSTA in Box 3 in the
mid 1960s that cut short the long warm phase in Box 3
(IPO negative), reducing the observed mean run-
length in that box, which would otherwise be around
20 yr.

The variance results in this section are consistent
with the results of Kociuba and Power (2015) who
examined the ability of models to simulate equatorial
MSLP variability on interannual and interdecadal
time-scales. They found that interannual atmospheric
variability was too strong and decadal variability was
too weak. They concluded that the deficiency on
decadal time-scales primarily arose because the
models tend to underestimate the equatorial MSLP
lag-one autocorrelation, but overestimate the magni-
tude of the (negative) lag-two autocorrelation. They
showed that such deficiencies combine to make it
more difficult to sustain decadal and longer-term
anomalies. This also helps to explain why the TPI run-
lengths tend to be too short and why the models tend
to overestimate the frequency of IPO events.

It is also interesting to note that the models tend to
simulate variability in SST in the central-eastern
equatorial Pacific reasonably well. However, the
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are individual model centuries of pre-industrial control experiments. Note the difference in observed SST patterns from Henley et al
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models exhibit similar deficiencies in both the off-
equatorial TPI nodes and equatorial atmospheric
variability (Kociuba and Power 2015). This indicates
that equatorial atmospheric variability on interannual
and decadal time-scales is at least partially driven by
SST variability beyond the central-eastern equatorial
Pacific, and also points towards the importance of
tropical-extratropical atmosphere-ocean interactions,
as emphasised by Newman et al (2016) and Farneti
et al (2014).

3.2. Spatial metrics

Model performance is further investigated in this
section by comparing the observed and modelled
spatial patterns of the IPO in preindustrial control
runs (similar results are obtained for the historical
runs, not shown). The basin-scale aspects of the

observed patterns of the IPO are captured well by the
models. In particular, the models capture the strong
extratropical SST amplitude variability in the North
Pacific, and the broad ENSO-like cold-tongue region,
extending into the Eastern North Pacific off the coast
of North America (figures 3(a)—(d)). The multi-model
ensemble (MME) composite pattern shows stronger
SST anomalies near the Kuroshio extension region
relative to the central North Pacific, which is not seen
in the observations, and is similar to the PMIP3
simulated PDO patterns presented by Fleming and
Anchukaitis (2016) (their figures 1 and 2). The mean
MME pattern in the positive phase of the IPO exhibits
equatorial SST anomalies extending further into the
western Pacific than in the observed pattern, consis-
tent with the well-known cold tongue model bias of
ENSO. SST anomalies near the Maritime continent

6
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and around northern and eastern Australia are
accordingly of opposite sign to the observed pattern
for positive IPO phases (figure 3(c)). The models
better capture the SST pattern in this region during
negative IPO phases than positive IPO phases (figure 3
(¢)). The South Pacific has generally weaker SST
amplitude relative to the North Pacific in the MME
pattern compared to the observed, particularly in
positive IPO phases, for which the observations
indicate similar intensities of SST anomalies in the
North and South Pacific. There is a suggestion that the
Pacific IPO pattern is related to anomalous SST
patterns in the Indian and Atlantic Oceans in models,
however this is less consistent in observations (shown
in the supplementary figure S7). Our model patterns
have broad agreement with the IPO patterns shown by
Mabher et al (2014) using a PC-based methodology,
and the PDO patterns identified by Newman et al
(2016). In addition, with regards to the observed
patterns, we find weak sensitivity to changes in
methodology (e.g. analysis period, baseline period,
IPO threshold). A longer baseline period, as used in
Henley et al (2015), results in a slightly stronger oft-
equatorial IPO positive pattern. However, the differ-
ence does not influence the results strongly.

The pattern correlation coefficients between the
models and observational IPO pattern across all
modelled centuries are mostly in the range of 0.4-0.8
(figures 3(e) and (f)). The standard deviation of the
patterns is a measure for the strength of the anomaly
pattern in IPO phases. This is slightly underestimated
by the models, and marginally closer to observations
in IPO positive phases than in IPO negative phases.
Particularly encouraging are the similarities between
the modelled and observed patterns in regions distant
from the nodes of the TPI index, such as broad regions
along the coast of North America and the Gulf of
Alaska. The higher levels of spatial correlation between
modelled and observed SST patterns (near 0.8) mainly
result from greater similarity in the magnitude of SST
anomalies in the equatorial region (figure S5). Models
showing such high pattern correlations generally do
not show appreciably better pattern magnitudes in the
South Pacific.

Turning now to model biases, slightly cooler than
observed anomalies are simulated across most of the
Pacific basin during IPO positive phases, with the
exception of the Sea of Japan and the south and eastern
coasts of Australia and in the Tasman Sea where the
SST model bias is very small and positive (figure 4(a)).
During negative phases, biases are more equally of
both signs but mainly quite small. The strongest warm
biases are off the coasts of Baja California, in the
Kuroshio extension region and off the coast of
southeast mainland Australia (figure 4(b)). The
highest areas of inter-model difference in the bias
(above 0.2 °C) are quite localised, in the Bering Sea
and in the Kuroshio extension region (figures 4(c) and
(d)). Otherwise, inter-model differences are smaller

W Letters

and rather uniform across models elsewhere in the
Pacific. The model biases are systematic in most
regions during both IPO phases (figures 4(e) and (f)).
That is, when a bias is apparent, a large proportion of
the models display the bias. Although an overall cold
bias is apparent in IPO positive phases (figure 4(a)),
there are large proportions of the basin where the
majority of models are biased warm (figure 4(e)),
indicative of skewness in the distribution of model
biases.

3.3. Association between temporal and spatial skill
In the previous sections we examined the ability of the
models to simulate temporal and spatial characteristics
of the IPO separately. Here we determine if there is a
link between the ability of models to simulate these
temporal and spatial characteristics in preindustrial
control runs. To do this we examine the relationship
between the spatial pattern correlation for each
century in each model and a measure of the ability
of the models to capture the ratio of the decadal-to-
total variance of the TPI (figure 5). The temporal
measure is the absolute value of the difference between
the modelled and observed ratio of decadal-to-total
standard deviation in the TPI, expressed as a fraction
of the observed value. For example, a value of 0.2
indicates a 20% error (either positive or negative) in
the statistic relative to the observation. Figure 5 shows
that models that exhibit higher skill (lower error) in
the ratio of the decadal-to-total variance also have a
strong tendency towards having a higher spatial
pattern correlation with the IPO pattern in observa-
tions for both positive and negative IPO phases. For
example, for positive IPO phases, of the 13% (49 of
390) of model centuries that have a fractional bias in
the temporal statistic of 0.2 or less, 43 of 49 (88%) also
have a pattern correlation over 0.5. The corresponding
percentages for IPO negative phases are 13% and 84%
respectively. This result is highly consistent across both
IPO positive and negative phases, and most models
have several of their preindustrial centuries repre-
sented (model results shown in table S2). The
Spearman correlations between the spatial and
temporal metrics are: —0.38 and —0.35 for positive
and negative IPO respectively (both p-values < 0.01).
Models with two or more preindustrial centuries in the
high skill region in either IPO phase are: ACCESSI1-0,
ACCESS1-3, CMCC-CM, CSIRO-Mk3-6-0, MPI-
ESM-LR, MPI-ESM-MR, MPI-ESM-P, MRI-CGCM3
and NorESM1-M.

4. Conclusion

This study investigates the spatial and temporal
simulation of the IPO in CMIP5 pre-industrial
control and historical all-forcings runs using the TPI,
a box-based index for tracking the IPO. As a whole,
the models underestimate decadal-scale TPI variance
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and the ratio of the decadal-to-total variance
compared to observations. Though the models
credibly represent the observed spatial pattern of
Pacific SSTs associated with the IPO, there is an
overall bias in the duration of simulated IPO phases,
with most models underestimating the mean run-
length of IPO positive and negative phases and
thereby overestimating the number of IPO events per
century.

These results are consistent with the results of
Kociuba and Power (2015) who found that interannual
MSLP variability was too high and decadal variability
was too weak. The deficiency on decadal time-scales
primarily arose because the models tend to underesti-
mate persistence and overestimate oscillatory behav-
iour in ENSO.

Our results indicate that the temporal bias is also
related to the deficiencies in the simulation of decadal
to multi-decadal variance in SST in the extratropical
Pacific. Given that the models characterise decadal
variability in the equatorial Pacific better than the off-
equatorial Pacific, and also given the links between the
IPO, concurrent changes in upper ocean heat content
and the strength of the shallow tropical meridional
overturning cells (STCs) (Meehl et al 2011, 2014,
Newman et al 2016, Roemmich et al 2015), the under-
simulation of decadal variability in the extratropical
Pacific could be due to a model bias in coupling the
equatorial to the extratropical Pacific via the
atmospheric bridge and the STCs. Temperature data
in the intermediate depth ocean is short and sparse
prior to the availability of sub-700 m depth ocean
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(ARGO) floats in 2005. Given the timing of the last
IPO phase shift (~1999) and the decadal to multi-
decadal duration of IPO phases, observational
validation of this hypothesis is a challenge.

Tropical-extratropical interactions via an atmo-
spheric ‘bridge’ (Newman et al 2016) and oceanic
‘tunnel’ (Farneti et al 2014) are likely component
mechanisms that contribute to the decadal-scale
variability evident in the IPO and PDO indices. A
multidecadal mechanism proposed by Farneti et al
(2014) relates cooler tropical SST anomalies to
weakened subtropical winds, which in turn affects a
suppression of the subtropical gyre. Reduced downw-
elling and equator-ward meridional heat transport via
the subtropical cell (STC) leads to reduced equatorial
upwelling. This provides a negative feedback mecha-
nism, whereby cool equatorial SST anomalies are
returned to the equator as warm anomalies on decadal
timescales. A mechanism with tropical origins could
result in quasi-symmetrical patterns across both
hemispheres. However, a comprehensive mechanistic
understanding of the IPO, its distinction from the
PDO and the South Pacific Decadal Oscillation
(SPDO, Chen and Wallace 2015), and its relation to
interannual variability of ENSO remain unconfirmed
by observational data and are the subjects of future
research.

Given the uncertainty in the characteristic
timescale and long-term stability of the IPO and
PDO (Fleming and Anchukaitis 2016), improved
palaeoclimate reconstructions of the IPO and PDO are
also likely to provide vital extensions to instrumental
observations, (D’Arrigo et al 2001, D’Arrigo and
Wilson 2006, Henley et al 2011, Linsley et al 2015,
Thompson et al 2014). Existing reconstructions agree
poorly (Wise 2014) so additional efforts are required
to understand the history of the IPO and the PDO
prior to the instrumental period.

We show that a subset of 13% of CMIP5
preindustrial control simulations capture the ratio
of the decadal-to-total TPI variance to within 20% of
the observational value and the majority of simu-
lations in this subset also exhibit higher spatial skill.
This association between spatial and temporal skill in
the representation of the IPO in CMIP5 models has
not been previously identified. The emergence of a
higher skill subset of models that depict: (i) patterns of
Pacific SST variability similar to the observed IPO; and
(ii) temporal variance relationships similar to ob-
served, suggests that the IPO is, or is at least closely
related to, one or more inherent dynamical mecha-
nisms of the climate system.

With the presence of model biases in pre-industrial
control runs, uncertainty is introduced with regards to
the future behaviour of the IPO obtained from forced
model runs, such as a preference for a particular
phase under greenhouse warming. The documenta-
tion here of model strengths and weaknesses related to
simulation of the IPO presents an opportunity to
make improvements in model simulations influencing
decadal climate prediction. In particular, the mecha-
nism that produces the IPO, which could involve
tropical-midlatitude interactions in the Pacific and
coupled ocean dynamical processes (Farneti et al
2014, Meehl and Hu 2006, Newman et al 2016) and
dynamical connections between the Pacific and
Atlantic Oceans (McGregor et al 2014, Taschetto
et al 2015), needs to be better understood and
modelled. Ongoing research into these mechanisms
and monitoring of mid to deep ocean circulation are
expected to improve our understanding of, and ability
to track and predict the IPO. Given the association
between IPO phase and global surface temperature
variations, improved prediction of the IPO could
result in better-constrained decadal predictions of
future global mean surface temperature.
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