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ABSTRACT

Given the consequences and global significance of El Niño–Southern Oscillation (ENSO) events it is es-

sential to understand the representation of El Niño diversity in climate models for the present day and the

future. In recent decades, El Niño events have occurred more frequently in the central Pacific (CP). Eastern

Pacific (EP) El Niño events have increased in intensity. However, the processes and future implications of

these observed changes in El Niño are not well understood. Here, the frequency and intensity of El Niño
events are assessed inmodels fromphases 5 and 6 of theCoupledModel Intercomparison Project (CMIP5 and

CMIP6), and results are compared to extended instrumental and multicentury paleoclimate records. Future

changes of El Niño are stronger for CP events than for EP events and differ between models. Models with a

projected La Niña–like mean-state warming pattern show a tendency toward more EP but fewer CP events

compared to models with an El Niño–like warming pattern. Among the models with more El Niño–like
warming, differences in futureEl Niño can be partially explained by Pacific decadal variability (PDV).During

positive PDV phases, more El Niño events occur, so future frequency changes are mainly determined by

projected changes during positive PDV phases. Similarly, the intensity of El Niño is strongest during positive

PDV phases. Future changes to El Niño may thus depend on both mean-state warming and decadal-scale

natural variability.

1. Introduction

Globally, interannual climate variability is predomi-

nantly influenced by the coupled interactions of ocean

and atmosphere driven byEl Niño–SouthernOscillation

(ENSO). The livelihoods of millions of people are

affected by ENSO’s anomalous warm phase (El Niño)
and cool phase (La Niña). During these anomalous

phases, the impacts on temperature and precipitation

are often of dramatic extent, influencing entire har-

vesting seasons (Iizumi et al. 2014; Anderson et al.

2019), economies (Cashin et al. 2017), human health

(Anyamba et al. 2019), and climate extremes across the

globe (Ward et al. 2014).Corresponding author: Mandy B. Freund, mandy.freund@csiro.au

1 OCTOBER 2020 FREUND ET AL . 8237

DOI: 10.1175/JCLI-D-19-0890.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 10/25/24 12:53 AM UTC

mailto:mandy.freund@csiro.au
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


El Niño events can be characterized by two different

warming patterns, differentiated by the location of the

maximum sea surface temperature anomalies (SSTA).

Canonical eastern Pacific (EP) El Niño events exhibit

their largest SSTAs in the far eastern tropical Pacific

(Rasmusson and Carpenter 1982). In the case of central

Pacific (CP) El Niño events, also referred to as warm

pool (Kug et al. 2009; Kao and Yu 2009), date line

(Larkin and Harrison 2005), or El NiñoModoki (Ashok

et al. 2007), the maximum SSTAs are located in the

central Pacific.

Evidence is emerging that El Niño has recently changed

its behavior. An increasing number of CP El Niño events

have been observed during the most recent decades of the

instrumental period (Yeh et al. 2009; Kug et al. 2009; Lee

and McPhaden 2010; McPhaden et al. 2011; Freund et al.

2019). Coral-based reconstructions of El Niño over the

past four centuries provide evidence that the increase of

CP events since the 1980s is unusual in a multicentury

context (Freund et al. 2019). However, the mechanisms

leading to the increased proportion of CP El Niño events

remain highly uncertain (Capotondi et al. 2015). Most

studies investigating future changes of El Niño diversity

using coupled general circulation models (CGCMs)

show a lack ofmodel agreement (Collins et al. 2010; Kim

and Yu 2012; Taschetto et al. 2014; Chen et al. 2017).

Systematic model biases, particularly in the equatorial

Pacific, provide a challenge for the representation of

ENSO diversity (Brown et al. 2015; Bayr et al. 2017) and

often result in an underestimation of ENSO diversity

(Ham and Kug 2011; Timmermann et al. 2018). Decadal-

scale variability in ENSO behavior adds further uncer-

tainty to models’ representation of ENSO (Wittenberg

2009;Choi et al. 2011;Newmanet al. 2011;Yeh et al. 2011).

Efforts to understand the mechanisms underlying CP

and EP events are hindered by model biases, a lack of

model agreement, and the dearth of long-term obser-

vations. Furthermore, proposed mechanisms may be

superimposed, and act on different time scales that

range from weeks to decades. For example, subseasonal

and stochastic processes such as differences in equato-

rial wind anomalies (Chen et al. 2015), zonal advection

(Yeh et al. 2009), and shifts of convection centers

(Stuecker et al. 2013) may influence the type of El Niño.
Stochastic forcing preconditioned by initial conditions

like an anomalous ocean heat excess has also been

shown to influence the El Niño type (Timmermann

et al. 2018).

Alternatively, long-termmean-state changes may also

play an important role in favoring a certain type of El

Niño. For example, the weakening of easterly trade

winds (Vecchi et al. 2006), accelerated central equato-

rial sea surface warming (Karnauskas et al. 2009),

enhanced interannual variability in the central Pacific

(Liu et al. 2017), and a shoaling thermocline (Collins

et al. 2010) could promote more CP El Niño events

to occur.

On decadal to multidecadal time scales, tropical and

extratropical circulation patterns in theNorth (DiLorenzo

et al. 2010) and South Pacific (Tatebe et al. 2013; Zhang

et al. 2014), Indian Ocean (Luo et al. 2012), and the

Atlantic (Ham et al. 2013) are thought to promote favor-

able conditions for one of the two types of El Niño
(Sullivan et al. 2016; Chung and Li 2013).

The central question still remains, however: what

processes contribute to changes in intensity and fre-

quency of EP and CP El Niño events in historical and

future climates? Here we consider the influence of three

long-term and large-scale characteristics: mean global

warming rates, differentiated zonal SST warming, and

Pacific Ocean multidecadal variability.

Given that recent observed increases in the frequency

of CP events appear to be associated with global mean

temperature warming trends, do models that simulate

greater warming show larger changes in CP and EP El

Niño frequency? Sensitivity experiments using CGCMs

have already hypothesized strong nonlinear responses of

ENSO to sea level pressure changes (Frauen et al. 2014)

and global precipitation rates (Collins et al. 2010). phase

6 of theCoupledModel Intercomparison Project (CMIP6)

models, for which climate sensitivity has strongly increased

in many cases (Gettelman et al. 2019), may therefore ex-

hibit more pronounced differences than the previous

generation of models.

Differentiated warming of the eastern and western

equatorial Pacific can lead to ‘‘El Niño–like’’ and ‘‘La

Niña–like’’ warming patterns, when the eastern/western

Pacific warms faster than the western/eastern (Sun and

Liu 1996; An et al. 2011; Cane et al. 1997; Collins and

Groups 2004). Do models with a more El Niño–like or

La Niña–like mean-state change show larger changes in

CP or EP event frequency? El Niño–like SST warming

trends are often associated with a weakening Walker

circulation (Held and Soden 2006) and eastward shift of

the Walker circulation (Bayr et al. 2014). Whereas a La

Niña–like warming trend has been associated with a

strengtheningWalker circulation (Kosaka and Xie 2013;

Seager et al. 2019) and increased strong El Niño events

(Wang et al. 2019). Models that capture observed ENSO

nonlinearity may simulate a La Niña–like trend when

ENSO amplitude is reduced (Kohyama et al. 2017).

In addition to trends in the long-term mean state,

Pacific decadal variability (PDV) (Liu and Lorenzo

2018) associated with the Pacific decadal oscillation

(PDO) (Mantua et al. 1997)/interdecadal Pacific oscil-

lation (IPO) (Power et al. 1999; Henley et al. 2015) may
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play a role inmodulating, or beingmodulated by, ENSO

(Newman et al. 2003). Domodels show stronger changes

of El Niño events during PDV positive/negative phases?

Early work has associated an increase in CP events

with a positive PDV phase (Graham 1994; Hare and

Mantua 2000; Trenberth and Stepaniak 2001), but since

1999, an increase of CP events coincides with a shift of

PDV to a negative phase (Hu et al. 2013; Guan and

McPhaden 2016; Lübbecke andMcPhaden 2014). Thereby,

Pacific decadal variability may be an important contributor

to the occurrence of CP and possibly EP events (Sullivan

et al. 2016; McPhaden et al. 2011; Zhao et al. 2016).

In this study, we investigate the SST characteristics

that contribute to future changes of both El Niño types.

We consider individual model responses and assess

whether future changes of EP and CP El Niño in CMIP5

and CMIP6 model experiments are related to individual

models’ (i) global warming rate, (ii) mean-state changes

of the zonal SST gradient, and (iii) Pacific decadal var-

iability. We compare the frequency, variability, and in-

tensity of simulated El Niño events to multicentury CP

and EP El Niño reconstructions and the most recent

observed changes (Freund et al. 2019) and highlight the

differences between the unforced preindustrial control

and forced future simulations.

2. Datasets and methods

a. Observations and long-term reconstruction

The gridded (18 3 18) dataset of monthly sea surface

temperatures HadISST, version 1.1 (Rayner et al. 2003),

is used as a reference for observed conditions in the

tropical Pacific from 1870 to 2016. Monthly SSTA are

calculated spatially in the domain (158N/S, 1408E–758W)

and for the Niño-3 (58N–58S, 1508–908W) and Niño-4
(58N–58S, 1608E–1508W) regional averages by subtract-

ing the monthly climatology (1920–2016). Based on the

Niño-3 and Niño-4 indices, we derive a monthly CP in-

dex andEP index [(1)] followingRen and Jin (2011), as a

measure of CP and EP variability.

In addition to the instrumental record of observed El

Niño events, we also use a multicentury record (1617–

2008) of El Niño events reconstructed from ENSO-

sensitive proxy records as a long-term reference (Freund

et al. 2019). The palaeoreconstruction (Recon) of dif-

ferent types of El Niño events over this period gives an

estimate of the natural variability of CP and EP events

prior to the instrumental record.

b. CMIP models

We assess simulated ENSO behavior and El Niño
diversity in coupled global climate models (CGCMs)

taking part in CMIP5 (Taylor et al. 2012) and CMIP6

(Eyring et al. 2016). We use monthly sea surface tem-

perature from 51 climate models (Table A1). The CMIP

experiments include long-term simulations of global

climate prior to the industrial period (preindustrial

control) covering at least 300 years (Eyring et al. 2016)

and simulations of future conditions over the twenty-

first century. CMIP5 models simulate the 2006–2100

period following differing emission scenarios repre-

sented by the representative concentration pathways

(RCPs). We focus on the high emissions scenario, RCP8.5

(Meinshausen et al. 2011) due to a higher expected signal-

to-noise ratio. CMIP6models simulate future conditions in

the period from 2016 to 2100 based on shared socioeco-

nomic pathways (SSPs). The SSP5-8.5 scenario has similar

forcing levels to RCP8.5 (Meinshausen et al. 2020). We

assess simulated ENSO behavior and compare changes in

projected El Niño diversity based on these two similarly

high emission scenarios.

c. Zonal sea surface temperature gradient and
decadal variability

Mean-state changes are estimated by the change of

the annual zonal sea surface temperature gradient (ZSG)

following Kohyama et al. (2017). The zonal sea surface

temperature gradient represents the differentiatedwarming

of the eastern and western portion of the upper equatorial

ocean as the difference of Niño-3 minus Niño-4 SSTA. A

change toward more positive ZSG indicates a stronger

warming in the eastern Pacific compared to the central

Pacific. Therefore, a positive long-term trend inZSGcan be

understood as a ‘‘El Niño–like mean-state warming’’ that is

possibly related to aweakeningof theWalker circulation. In

contrast, a trend toward negative ZSG can be understood

as a ‘‘La Niña–like mean-state warming’’ that has been

believed tobe associatedwith a strengtheningof theWalker

circulation (Kohyama and Hartmann 2017). By computing

theZSG index in theCMIPmodels,we candifferentiate the

models by the mean-state warming pattern (El Niño/La
Niña–like warming). We note that a trend of the ZSG can

be influenced by a high degree of internal SST variability

(Solomon and Newman 2012; Coats and Karnauskas 2017)

and different measures of mean-state changes could be

considered in future.

Decadal-scale variations in the Pacific are measured

by the different phases of the interdecadal Pacific os-

cillation using the tripole index (TPI) (Henley et al.

2015) smoothed by a 13-yr Chebyshev low-pass fil-

ter (Fig. 1).

d. El Niño identification and distinction

Here we identify El Niño events and distinguish between
CP andEP event types in observations, reconstructions and
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climatemodel simulations using theNiñowarmpool (NWP

or CP index) and Niño cold tongue (NCT or EP index)

indices (Ren and Jin 2011). Based on piecewise linear

combination of Niño-3 (N3) and Niño-4 (N4) SSTA, the

NiñoSST indices are conditionedby theENSOphase.Here

we calculate the EP and CP index from monthly datasets

following the calculation:

�
EP

index
5N

3
2aN

4

CP
index

5N
4
2aN

3
,
a5

�
2/5,N

3
N

4
. 0

0, otherwise
: (1)

These El Niño indices are aggregated to seasonal

means for MAM, JJA, SON, and DJF and have

previously been used to infer event classification

(Freund et al. 2019; Yeh et al. 2015). The classifica-

tion tree identifies three categorical classes at an

annual time step: EP El Niño, CP El Niño, and non–

El Niño (neutral and La Niña) events using seasonal

thresholds of the eight predictor variables (four

seasons, preceding and current, two indices). The

identification of events follows decisions that rely on

consecutive seasons, whereby both El Niño indices

are normalized within a moving window of 30 years

length. EP El Niño events are identified when the

SSTs in the eastern Pacific are elevated, so that the

EP index exceeds a threshold (EP index $ 1.35)

during SON. CP El Niño events are identified if the

SSTs in the eastern Pacific are slightly warmer than

usual (CP index . 0.11 and #1.35), and peak warming

occurs in the central Pacific, so that the CP index

exceeds a threshold (CP index $ 0.59) in DJF.

For more details on this methodology, see Freund

et al. (2019).

The trained classification algorithm is applied to the

climate model output by using model-simulated EP and

CP indices at seasonal resolution. Similarly to the

observational indices, modeled index time series are

seasonally averaged and adjusted to have stable mean

and variance at decadal time scale by normalizing the

indices within a moving window of 30 years length.

We further assess the performance of this classifica-

tion approach, including its ability to correctly iden-

tify and distinguish the EP and CP events using

pattern correlations between the observed and identi-

fied model events. We use the decision tree classification

to identify El Niño events, their frequency, character

(type), and intensity. The event intensity is taken as the

maximum SSTA during an El Niño event in DJF, calcu-

lated from the EP and CP indices into Niño-3 and Niño-4
SST anomalies.

3. Model evaluation, ENSO representation,
and biases

The CMIP preindustrial control runs are examined

with the aim of identifying better performing models

and distinguishing them from heavily biased models.

(A list of all model simulations with available monthly

surface temperatures hereinafter referred to as SST are

shown in Table A1.) The goal is to subset the available

models based on their performance in the preindus-

trial control simulations and use this subset for further

analysis. Ultimately, a single better performing model

for each modeling center is selected to avoid including

multiple models with very similar components (Knutti

et al. 2013).

FIG. 1. Trends and changes of the ZSG index smoothed by a 7-yr running mean following Kohyama et al. (2017)

and the TPI index in observations (HadISST, 1870–2016) and CMIPmodels in the future scenario runs RCP8.5 and

SSP5-8.5 until 2100. Two selected models from the CMIP5 and CMIP6 phase are shown that represent El Niño/La
Niña–like warming trends estimated by the least squares best-fit trend line in the future scenario run. Shading

highlights observed periods of positive/negative PDV phases based on the TPI index.
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Although there are a number of different aspects of

the tropical ocean and atmosphere system that must be

simulated correctly to realistically represent ENSO in

CGCMs (Wittenberg et al. 2006), we consider only the

errors and biases of surface conditions expressed by SST

to realistically simulate El Niño variability and diversity.
In our study, the distinction of El Niño types depends

mostly on the correct temporal and spatial representa-

tion of these surface conditions. We therefore focus on

the correct representation of seasonal phase locking, the

location of SST anomalies and the possibility of a sec-

ondary peak in zonal SST variability (Graham et al.

2017). Consequently, all models are evaluated based on

three criteria:

d Seasonal phase locking: Strongest variability in Niño-3
and Niño-4 occurs during SON or DJF.

d Location of variability: Equatorial SST variability

peaks east of 1508W.
d Absence of a dominant secondary peak in SST vari-

ability: Zonal secondary peak that is below 50% of the

maximum SST variability (28N–28S).

a. Seasonal phase locking

We assess the ability of CMIPmodels to simulate the

seasonal phase locking of El Niño events by calculating

the standard deviations of SST during different seasons

and in different regions [Fig. 2, Niño-4 (left) and Niño-3

(right)]. Instrumental data (HadISST) shows that both

regions display the strongest variability and peak warm-

ing during austral spring (SON) and summer (DJF)

(Fig. 2), respectively (Chang et al. 1994; Tziperman

et al. 1994; Neelin et al. 2000). Most models capture

central Pacific (Niño-4) seasonality better than in the

eastern region (Niño-3). Out of 51 CMIP models, 46

show strongest variability during SON and DJF for

the Niño-4 index (Fig. 2a), while only 39 models cor-

rectly reflect seasonal phase locking in the eastern

Pacific (Niño-3) (Fig. 2b). Among the CMIP5 models,

ACCESS1.3 and IPSL-CM5A-LR are unable to rep-

resent realistic ENSO behavior regarding seasonality

in both regions. This strong phase bias could be as-

sociated with the overall weak annual cycle indicated

by low interseasonal variations in standard deviations

in these models. Other models with a weak annual

cycle include the MPI models (MPI-ESM-LR, MPI-

ESM-MR, MPI-ESM-P), which compared well with

the observed seasonality in the eastern Pacific but not

always in the central Pacific. From phase 5 to phase 6,

the IPSL-CM6A-LR model shows an improvement in

representing the central Pacific (Niño-4) but not the
eastern Pacific (Niño-3). Overall, most CGCMs rep-

resent the synchronization of ENSO to the seasonal

cycle similar to the observed (Bellenger et al. 2014;

Lloyd et al. 2009; Guilyardi 2005; Taschetto et al.

2014). Alternative methods to quantify seasonal phase

FIG. 2. Seasonal phase locking in CMIPmodels. Standard deviation of (a) Niño-4 and (b) Niño-3 for instrumental

record (HadISST) and CMIP5 and CMIP6 models, normalized by their maximum value. Peak season given by the

maximum is indicated with white crosses.
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locking (appendix A) show similar behavior (Fig. A1).

Therefore, we exclude the 13 CMIP5 models that do not

exhibit their strongest variability in Niño-3 and Niño-4
during SON or DJF (Table 1) from further analysis.

b. Location of main variability peak

The zonal structure of observed SSTA variability

(HadISST) shows ENSO’s observed center of action in

the eastern Pacific (Fig. 3). Along the equator, the in-

terannual variability is strongest in the Niño-3 region

and is reduced by approximately one-half to the west

of the date line (Fig. 3). The observed center of action

is located close to 1108W longitude indicated by a

single peak in the annual standard deviation. For

CMIP5 and CMIP6, the location and amplitude of the

center of action vary substantially between models.

Although the majority of model simulations show

peak variability in he eastern Pacific, the amplitude is

typically overestimated, by up to double the observed

value (e.g., CMIP5 models FIO-ESM, BNU-ESM,

BCC-CSM1.1M, CESM1-WACCM, and CMIP6 models

CAMS-CSM-1.0, BCC-CSM-MR). The CMIP6 models

are consistent in this overestimation of variability but

show improvements. For instance, greatest improve-

ments can be seen for the Canadian models, which in

phase 5 (CanESM2) peaked too far west and improved in

phase 6 (CanESM5) to one of the best models in terms of

zonal variability structure. Contrary to models with well-

captured patterns are models that show a reverse zonal

pattern (CSIRO-Mk3.6-0 peaks in the tropical warm

pool) or a displacement of the center of action into the

central Pacific (CSIRO-Mk3L-1.2, MIROC4h, GISS-E2-

R). This serves as an indicator of unusually high El Niño
activity in the central Pacific and could therefore be

mistaken for CP El Niño events. To distinguish El Niño
events, the correct location is important while the abso-

lute degree of variability is secondary due to the use of

standardized indices.We therefore restrict our analysis to

models that correctly simulate peak variability in the

eastern Pacific (east of 1508W); see Table 1 (we exclude

6 models).

c. Absence of secondary peak in variability

In addition to the displacement of the center of action,

one of the most prominent systematic errors in the

mean-state conditions in the tropical Pacific is the cold

tongue bias (Li and Xie 2014) and with it often a

‘‘secondary peak’’ in equatorial SSTs during El Niño
(Graham et al. 2017). The cold tongue bias, indicated

by lower-than-observed SSTs in the western and cen-

tral equatorial Pacific, shifts ENSO-related atmo-

spheric responses such as deep convection too far

west (Brown et al. 2013, 2015). The enhanced and

displaced zonal temperature gradient consequently

leads to a change in the zonal advective feedback

(west Pacific) relative to the vertical advective feed-

back (east Pacific), which reinforces further warming.

TABLE 1. CMIP models available for model evaluation. The per-

formance of each model is evaluated based on the control simulations

of surface temperatures. Themodel’s ability to simulate each criterion

is marked by a circle where filled circles indicate passing and nonfilled

circle failing criteria. Models in bold are used for further analysis.

Seasonality

LocationModel Niño-3 Niño-4 Single peak

ACCESS1.0 d d d d

ACCESS1.3 s s d s

BCC-CSM1.1-M d d d d

BCC-CSM1.1 d d d d

BNU-ESM d d d d

CCSM4 d d d d

CESM1-BGC d d d d

CESM1-CAM5 d d d s

CESM1-FASTCHEM d d d d

CESM1-WACCM d d d d

CMCC-CMS s d d d

CMCC-CM d d d d

CNRM-CM5 d d d d

CSIRO-Mk3.6-0 s d s d

CSIRO-Mk3L-1.2 s d s d

CanESM2 d d d d

FGOALS-g2 d d d d

FGOALS-s2 s d d d

FIO-ESM d d d d

GFDL-CM3 d d d d

GFDL-ESM2G s d d s

GFDL-ESM2M d d d d

GISS-E2-H d d d d

GISS-E2-R d d s d

GISS-E2-R d d s d

GISS-E2-R d d s d

HadGEM2-CC d d d d

HadGEM2-ES d d d d

INMCM4 d d d d

IPSL-CM5A-LR s s d d

IPSL-CM5A-MR s d d d

IPSL-CM5B-LR d d d d

MIROC-ESM d s d d

MIROC4h d d s d

MIROC5 s d d s

MPI-ESM-LR d s d s

MPI-ESM-MR d d d d

MPI-ESM-P d s d s

MRI-CGCM3 s d d d

NorESM1-ME d d d d

NorESM1-M d d d d

BCC-CSM2-MR(6) d d d d

CNRM-CM6.1(6) d d d d

CanESM5(6) s d d d

GFDL-CM4(6) d d d d

IPSL-CM6A-LR(6) s d d d

MRI-ESM2.0(6) d d d d

UKESM1.0-LL(6) d d d d
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A secondary warming peak emerges in the western Pacific

that manifests as a double-peaked pattern of SSTwarming

(Graham et al. 2017). This double-peaked variability

pattern is not consistent with observations.

An accurate distinction of EP and CP El Niño event

types in CGCMs with a secondary warming peak may

not be possible. To avoid the nonrealistic double-peak

behavior in CGCMs, the simulations that show an ex-

tensive secondary peak are flagged (Table 1, single

peak). We flag the simulations that have a secondary

peak in variability farther to the west that is more than

50% of the magnitude of the primary peak in the east.

Models with a secondary peak are, for CMIP5, ACCESS1.3,

CESM1-CAM5, GFDL-ESM2G, MPI-ESM-P/-LR, and

MIROC5. According to Graham et al. (2017), these

models have previously shown a secondary peak in SST

variability along the equator. Interestingly, none of the

CMIP6 models considered here show a secondary peak

behavior.

Overall, we find 23 CMIP5 and 7 CMIP6 models that

adequately simulate the temporal and spatial represen-

tation of ENSO based on indices of mean state and

ENSO variability. So, to summarize, satisfactory per-

formance was measured by the seasonal phase locking,

the location of maximum variability in SSTs and exis-

tence of a single dominant peak of SST variability

(Table 1).We have selected one best performing CMIP5

model for each modeling center and included all

available CMIP6 models to allow for comparison. This

results in a total of 27 CMIP models that are used for

further analysis of El Niño events.

4. Characteristics of El Niño events in CMIP
models

CP and EP El Niño events are identified using the

decision tree in the each of the different simulations

in the 27 CMIP models. We first assess the perfor-

mance of our classification approach, including its

ability to correctly identify and distinguish EP and

CP El Niño types.

We furthermore check if the magnitude of simulated

variability has an impact on the absolute number of

identified El Niño events. Most of the models have

shown larger simulated SST variability along the equa-

tor compared to observations (Fig. 3). We therefore

compare the simulated variability in the Niño-3 and

Niño-4 regions to the event frequency of EP and CP

events (Figs. 4a,b). The magnitude of variability mea-

sured by the standard deviation across the models is

largely independent of the absolute number of identified

El Niño events (because the event definition uses a

threshold normalized relative to the model’s own vari-

ability). Models with a higher/lower degree of variability

in the Niño-3 or Niño-4 regions do not show more/less

El Niño events. Hence, the classification of El Niño

FIG. 3. Zonal SSTAvariability in observations andCMIP preindustrial control simulations. Standard deviation in

8Cofmonthly instrumental average SSTA (28N–28S) based on 1920–2016HadISSTv.1 data (Rayner et al. 2003) and

simulated SSTA variability in CMIP5 models and CMIP6 models (bold). Naming markers are located at the

maximum SSTA.
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events using normalized indices is unrelated to the

magnitude of variability simulated by the individual

models.

Finally, we assess how well the classification method

captures the simulated spatial patterns of the two types

of El Niño on average (Fig. 4c). Both El Niño types

compare well with the observed pattern based on regional

pattern correlation coefficients exceeding r 5 0.7 for all

models. On average, the spatial pattern of EP variability

(Fig. 5) is better captured than the CP pattern (Fig. 6). The

regression fit between pattern correlations for different

models suggests that models that have a better represen-

tation of EPElNiño tend to also show a better CPElNiño
representation (r2 5 0.56). The best model in terms of

pattern correlations, exceeding r$ 0.9 for both types of

El Niño, is the CESM1-BGC model (Ea), followed by

CCSM4 (D), and the CMIP6 model MRI-ESM2.0 (T6).

These models capture the observed spatial pattern of

pronouncedwarming off the SouthAmerican coast during

EP years as well as the displacement of strongest SSTA in

the central Pacific during CP years. Following from this

analysis, the models in subsequent plots are ranked by

their spatial performance for bothEP andCP events based

on their agreement with the observations. The ranking is

based on the Euclidean distance between the origin and

the point that corresponds to the pattern correlations of

EP and CP events with the observations.

We have selected a set of models that are able to sim-

ulate CP and EP events and evaluated their performance

and the use of our event classification scheme. We can

now examine El Niño variability and intensity in model

simulations considering the model ranking and different

warming patterns.

5. El Niño variability in CMIP models

a. Event frequency in observations and
reconstruction

Some previous studies have argued that the frequency

of El Niño events may change in response to climate

change (Yeh et al. 2009). More frequent observed CP El

Niño events in recent decades (Lee and McPhaden

2010) have been suggested to be part of natural varia-

tions of ENSO (Newman et al. 2011) but appear unusual

in a multicentury context (Freund et al. 2019). Given the

short instrumental record and irregular occurrence of El

Niño events, the estimation of natural variations from

observed events is limited. We first compare the natural

variations of El Niño in terms of event frequency based

on two periods: the observational record (1870 to 2016)

and the longer-term record provided by the paleo-

reconstruction (1617 to 2008). We then use the esti-

mated range of variability from both records as a

reference for the comparison with CMIP models and

further to assess projected changes.

According to the application of our classification ap-

proach to the early instrumental records (1870–1980)

FIG. 4. Simulated El Niño statistics. Scatterplot of variability vs event frequency given by the standard deviation

of (a) Niño-3 and (b) Niño-4 over the proportion of EP events and CP events by eachmodel (preindustrial control).

Linear regression fit is indicated by R2. (c) Model ranking shown by the scatterplot of pattern correlations of the

composites between the instrumental and the CMIP models for EP and CP El Niño events for DJF. Pattern

correlations are based on the domain (158N/S and 1408E–758W).
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prior to significant changes (Freund et al. 2019), the fre-

quency of EP (12.7%) and CP El Niño events (13.6%) is

nearly identical and equates to a total of about 26% of

years being classified as El Niño events (Figs. 7a,b). The

proportion of reconstructed El Niño events prior to 1980

(Freund et al. 2019) is slightly less (21%) compared to the

early instrumental record (25%) but agrees with the early

instrumental record that shows slightly more CP events

(12%) compared to EP events (9.4%).

EVENT FREQUENCY IN CMIP MODELS

Although the number of EP events in most models is

similar to the number of observed and reconstructed

events, the CMIP5 models GFDL-CM3, BNU-ESM,

CMCC-CM, and MPI-ESM-MR and CMIP6 models

MRI-ESM2.0, CNRM-CM6.1, CanESM5, and IPSL-

CM6A-LR substantially underrepresent the number of EP

events in their preindustrial control simulations (Fig. 7a). In

the case of theCanESM5and IPSL-CM6A-LRmodels, this

FIG. 5. Composite of SSTA during EP events. Composite of monthly SSTA for observed EP El Niño events (1951, 1957, 1965, 1972,

1976, 1982, 1986, 1997) and individual simulated EP El Niño events in the preindustrial control simulations of CMIP5 and CMIP6 (bold)

models during DJF (308N–308S, 708W–1208E). Models are sorted in descending order according to the model ranking.

1 OCTOBER 2020 FREUND ET AL . 8245

Unauthenticated | Downloaded 10/25/24 12:53 AM UTC



underrepresentation of EP events could be explained by

displacement of seasonal variability in the Niño-3 region

from DJF to MAM (Fig. 2). Furthermore, the overall

underrepresentation of EP events in the preindustrial

control simulations could also be due to a lack of external

forcing such as volcanic forcing linked to ENSO events

(Mann et al. 2005).

The proportion of CP El Niño events in better per-

forming models tends to exceed the proportion of CP

events represented by the instrumental and reconstructed

record (Fig. 7b). Among the 9 best ranked models, the

majority simulate more CP events in their preindustrial

control simulations than observed but not necessarily

more EP events than observed (Fig. 7a). At the same time,

lower-ranked models tend to show fewer CP events than

seen in the instrumental and reconstructed records.

The impact of anthropogenic forcing on the event

frequency is investigated by comparing the high emission

FIG. 6. Composite of SSTA during CP events. Composite of monthly SSTA for observed CP El Niño events (1963, 1968, 1977, 1979,

1987, 1991, 1994, 2002, 2004, 2009) and individual simulated CP El Niño events in the preindustrial control simulations of CMIP5 and

CMIP6 (bold) models during DJF (308N–308S, 708W–1208E). Models are sorted in descending order according to the model ranking.
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scenarios RCP8.5/SSP5-8.5 with the preindustrial control

simulations (Fig. 7c). Most of the models show a decrease

of CP events, but there is little agreement in the projection

of changes of EP and CP event frequency across the

models, as found in previous studies (Chen et al. 2017;

Taschetto et al. 2014). In general, larger changes in event

frequency are evident for CP events compared to EP

events, which could indicate a stronger sensitivity of the

central Pacific conditions toward external forcing. The

proportion of EP events shows changes of mostly less than

7%, whereas CP events indicate changes of up to 12%

relative to the preindustrial control simulations.

We investigate further the role of anthropogenic forcing

on changes in CP and EP event frequency by comparing

the rate of temperature increase (a proxy for climate

sensitivity) of the models (Fig. 7d). If changes in the

number ofElNiño events are driven by the overall amount

of warming, models that warm faster/slower would simu-

late more/less El Niño events. Figure 7 shows that this is

not the case. Changes in the number of CP or EP events

are not linearly related to the degree of warming simulated

in the RCP8.5/SSP5-8.5 scenarios at the 95% confidence

level using a t test. This is dynamically significant and in-

dependent of the windowing approach. We conclude that

the simulated temperature increase has no clear influence

on the number of simulated El Niño events.

b. Natural internal variability and projected changes
of El Niño frequency in CMIP models

The simulated range of variability of El Niño event

occurrence is explored in the preindustrial control

simulations and the unforced variability range is

compared with changes simulated in the high emission

scenarios, RCP8.5/SSP5-8.5. Based on the long-term

paleoreconstruction, the natural frequency of EP events

is larger than for CP events (Figs. 8a–c). The frequency

of CP events varies very little in the past 400 years prior

to 1980 but shows a strong increase in the most recent

observed period based on the instrumental estimate (red

dot in Fig. 8a). In the CMIP models, the preindustrial

control simulations exhibit more variability of CP event

frequency than seen in the reconstructions (Fig. 8d). In

the CMIP preindustrial control simulations, the fre-

quency of CP events is often similar to the frequency of

EP events (Fig. 8e). This suggests that the natural vari-

ability of CP frequency is mostly overrepresented by the

CMIP models and a number of models underestimate

the natural variability of EP events. There is no signifi-

cant dependency across the models between the natural

variability of EP event frequency and the natural vari-

ability of CP event frequency (r 5 20.3). Similarly,

there is no relationship to the overall performance of the

model based on our ranking (not shown).

By concentrating on the CP to EP ratio, we can compare

the relationship of both types of El Niño events simulta-

neously independent of model biases in total numbers of El

Niño events. The natural variability of the ratio of CP to EP

events is overall well captured by the preindustrial control

simulations (Fig. 8f) and agrees with the reconstructed

range (0.6–2.0) for the majority of models (Fig. 8c).

We now compare the projected future changes of CP

and EP event frequency with the individual model range

FIG. 7. Occurrence of different El Niño events and changes relative to preindustrial control. Number of (a) EP and (b) CP El Niño
events given as % of all years in preindustrial control simulations. Horizontal lines show the number of events in the instrumental record

(1870–1980: solid) and the reconstruction (1617–1980: dashed). (c) Stacked changes are given as differences in percent relative to the

preindustrial control simulation, so that positive/negative deviations indicate more events/fewer events in the future emissions scenario.

Change values are derived from the RCP8.5/SSP5-8.5 scenario. (d) Change values are also shown as a function of the global mean

temperature change in the RCP8.5/SSP5-8.5 scenario (not significant at p , 0.05). Models are ranked from (left) best to (right) worst.
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due to natural variability derived from the preindustrial

control simulations. Changes between the control sim-

ulation and the simulations under emission scenarios

RCP8.5 and SSP5-8.5 can give an indication how

El Niño diversity may change in future due to global

warming.

There is no consensus among the models toward an

increase or decrease in EP and CP El Niños in the future

simulations (Figs. 7b,c). Importantly, these changes are

not related to the degree ofmodel warming or themodel

performance measured by the ranking.

Instead, we differentiate the CMIP models by their

mean-state change in response to warming. The major-

ity of CMIP5 and CMIP6 models warm faster in the

eastern tropical Pacific than the western tropical Pacific,

often referred as an El Niño–like warming pattern. Out

of our 27 consideredCMIPmodels, only 5 show aLaNiña–
likewarmingpattern (BNU-ESM,FIO-ESM,GFDL-CM3,

CNRM-CM6.1, IPSL-CM6A-LR) of which the latter two

are fromCMIP6.When grouped by themean-state change,

all La Niña–like warming models show a reduction in CP

events in the future simulations compared to the control

simulations (Fig. 8g). At the same time, the majority of La

Niña–like warming models (4 out of 5) show more EP

events in the future simulations compared to preindustrial

control (Fig. 8h) resulting in an overall lower ratio of CP to

EP events in future scenarios (Fig. 8i).

However, the change in El Niño events for El Niño–
like warmingmodels is not as clear and shows changes of

opposing sign. Although the strongest changes in terms

of CP frequency increase and EP frequency decrease

occur for El Niño–like warming models, they are not

FIG. 8. Deviation changes of El Niño. Number of (a) CP and (b) EP events and the ratio of CP to EP events

(c) expressed by the average conditions divided by the mean of each reference period, so that the deviations larger

than 1 equal an increase/decrease relative to the reference mean. (a)–(c) Recent observations (1980–2016: red dot)

relative to reconstructed variability derived from sliding window of 94 years relative to average reference period

(1617–1980). (d)–(f) Event variability in preindustrial control simulations derived from sliding window of 94 years

relative to its mean. (g)–(i) Average conditions in the RCP8.5/SSP5-8.5 scenario relative to the average prein-

dustrial control simulations for all models (boxplot) and distinguished by models with a La Niña–like warming

trend and El Niño–like warming trend derived from the ZSG slope during the RCP8.5/SSP5-8.5 period. (j)–(l)

Changes relative to the preindustrial control simulations for individual models as a function of its ZSG slope in

RCP8.5/SSP5-8.5. Regression lines are separated for El Niño– and La Niña–like warming models.
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consistent across the group. A similar number of El

Niño–like warming models simulate the ratio of CP to

EP events to increase as to decrease.

The analysis of the individual warming trends in the

models measured by the ZSG slope and the ratio of

events shows that La Niña–like warming models show

stronger decreases of EP events the stronger the dif-

ferentiated zonal SST warming is, but this relationship

does not apply to the El Niño–like warming models

(Figs. 8j–l). Neither of these relationships are statis-

tically significant. Thus, the mean-state response to

warming is not a reliable predictor of future CP or EP

event frequency change.

In addition to mean-state responses to warming,

decadal-scale variability has been suggested as a possi-

ble cause of frequency changes in the observations (Hu

et al. 2013; Guan and McPhaden 2016; Lübbecke and

McPhaden 2014). We next investigate if these changes

could be related to differences in decadal-scale variability

during PDV positive and negative phases. Figure 9a

shows a summary of the changes simulated by the CMIP

models in comparison to the instrumental record

(appendix B) and the preindustrial control simulations

and future simulations. This time, all models are sorted

by their strength of change showing the strongest de-

creases of CP/EP ratio (Fig. 9, left) to strongest increases

(Fig. 9, right). Again, most of the El Niño–like warming

models’ group toward less CPevents andmoreEPevents,

related to a future decrease of CP/EP ratio (Fig. 9, left).

Interestingly, most of the models indicating future in-

creases of CP/EP ratio are CMIP6 models.

By focusing on positive and negative phase of PDV,

we investigate if differences and changes of El Niño
frequency arise from low-frequency phases of the Pacific

mean state such as El Niño–like or La Niña–like decadal
phases. In the instrumental record, both EP and CP

FIG. 9. Changes of El Niño frequencies and PDV phases. (a) Summary of the zonal SST trend in the future

simulations (positive/negative: El Niño/La Niña–like warming pattern) and changes of event frequency of CP

events, EP events and the overall ratio of CP/EP events as the difference between RCP8.5/SSP5-8.5 and prein-

dustrial control simulations for 27 CMIP models and the early (1870–1980) and late (1981–2016) instrumental

HadISST record. CMIP5 and CMIP6 (bold) models are sorted according to their CP/EP ratio (fourth row).

(b) Difference of event frequency of CP and EP El Niño events during positive PDV and negative PDV periods in

the preindustrial control simulations relative to the individual model event frequency derived from the prein-

dustrial control simulations and the entire instrumental HadISST record (1870–2016). (c) Difference between the

event frequency of CP and EP events during PDV positive and PDV negative periods derived from the prein-

dustrial control simulations and the RCP8.5/SSP5-8.5 simulations.
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events occur more frequently during positive PDV

phases (Fig. 9b, HadISST). Themajority of models show

that both El Niño types occur more frequently during

PDV positive phase (PDV1) than its negative phase

(Fig. 9b) and this is more pronounced for CP events. The

vast majority of simulated CP events occur during PDV

positive phases, whereas EP events can occur more

regularly during both PDVphases. Models that simulate

strong future changes of CP/EP ratio show a trend for an

even greater proportion of CP events in the positive

PDV phase. Figure 9c shows how the event frequency

changes from preindustrial control and RCP8.5/SSP5-

8.5 during PDV positive and negative phases. Models

that project decreases of CP/EP show a general reduc-

tion of CP events during both phases of PDV. A similar

result applies to models that show increasing CP/EP, for

which all models show strongest future decreases of EP

frequency during positive PDV but not necessarily

during the negative PDV phase.

6. El Niño intensity in CMIP models

We next investigate the range of simulated El Niño
event intensities and compare CMIP model results with

the instrumental record and reconstruction. The El Niño
event intensities are directly derived from the Niño-3
and Niño-4 indices as the maximum SSTA during an El

Niño event in DJF. Figures 10a and 10f show the

interquartile range of event intensities prior to 1980.

Compared to the range of reconstructed event ampli-

tudes, recent CP events have not increased in intensity

(Fig. 10a), whereas the three most recent EP events

appear unusual (Fig. 10g). The range of El Niño events

from the CMIP preindustrial control simulations shows

large variations in CP (Fig. 10b) and EP event intensity

(Fig. 10g). There is no pattern between the simulated

range of variability and model skill according to our

ranking. The GISS-E2-H model shows the strongest

variability of CP event intensity, whereas the FIO-ESM

model shows the least variations for both EP and CP

events. The majority of models shows stronger intensities

of CP events during PDV positive phases than negative

phases (Fig. 10d). Interestingly, five models (BNU-ESM,

IPSL-CM5B-LR, FGOALS-g2, GISS-E2-H, and BCC-

CSM2-MR) show opposing characteristics ofmore intense

CP events during PDV negative phases. A future decrease

of CP event intensity is mainly determined by the decrease

of CP events during the positive PDV phase (Fig. 10e). In

contrast, models that simulate more intense CP events in

future projections show an intensification during both

PDV phases (Fig. 10e). A decrease of CP intensity is,

therefore, mainly driven by less intense CP events during

positive PDV phases.

The most recent observed EP event intensities mostly

exceed the interquartile range of variability represented

by the preindustrial control simulations (Fig. 10f). Most

of the preindustrial control simulations do not incor-

porate these strong intensities within their interquartile

range (Fig. 10g). The exception are themodels: CESM1-

BGC, MRI-ESM2.0, CMCC-CM, and MIROC6, which

show large variations of EP event intensity that can

exceed the recent EP event intensities.

The intensity of EP events is less determined by the

PDV phase than for CP events. A similar number of

models simulate stronger and weaker EP events during

positive and negative PDV phases (Fig. 10i). In partic-

ular, better performing models agree on this behavior

and simulate intense EP events in both PDV phases. A

comparison with the RCP8.5 and SSP5-8.5 simulations

shows no model agreement on the sign of change in

terms of event intensity (Fig. 10k). Models showing

more intense EP events in a future climate are mainly

driven by an intensification of EP events during the

negative PDV phase (11 out of 13 models) but can

show a decrease in both phases.

Further, we test the hypothesis that models with a

larger amount of warming may show stronger EP or CP

event intensity changes. Neither for CP nor for EP El

Niño are event intensity changes directly related to the

global temperature increase in the models.

Similarly to the frequency changes, we also group the

models by the different mean-state changes. Most La

Niña–like warming models show a tendency toward

stronger CPElNiño events in a future climate (Fig. 10c).

El Niño–like warming models on the other hand show

no clear pattern and differ on the sign of change. The

intensity changes of EP events are similarly diverse

(Fig. 10h). Although the numbers of La Niña– and El

Niño–like warming models in our sample is small, we

argue that the spatial pattern of SST change does not

appear to be the main explanation for model disagree-

ment on projected changes in CP and EP El Niño event

intensity.

Overall, there is no clear model agreement on a future

trend towardmore intense El Niño events as observed in
recent decades (Fig. 10f). A similar number of models

project an increase of intense EP and CP events as

project a decrease. The vast majority of models simulate

more intense CP events during PDV positive phases.

The intensity of EP events is less restricted to a certain

phase of PDV and shows models with more intense EP

events during positive and negative PDV phases. Future

changes of EP event intensity are mainly driven by

changes in intensity during negative PDV phases,

whereas CP event intensity is driven by changes during

both PDV phases.
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FIG. 10. El Niño intensity of (a)–(e) CP El Niño events and (f)–(j) EP El Niño events derived from the reconstructed 400-yr reference

period prior to 1980 (boxplot) and recent observation (red dot) in (a) and (e), and from CMIP5 and CMIP6 (bold) preindustrial control

simulations in (b) and (g) relative to different reference periods. Average CP in (c) and EP in (h) El Niño intensity in theRCP8.5/SSP5-8.5

scenario grouped by models with a La Niña–like warming trend and El Niño–like warming trend in (d) and (i). Difference of El Niño
intensity during positive and negative PDV periods in the control simulations relative to the individual model event frequency derived

from the preindustrial control simulations in (e) and (j) sorted according to the model ranking. Changes of El Niño intensity as the

difference of El Niño intensity during positive and negative PDV phases derived from the preindustrial control simulations and the

RCP8.5/SSP8-5.8 simulations in (e) and (j), sorted from strongest declines (left) to largest increases (right) in terms overall change.
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7. Discussion

Motivated by recent observations of a trend toward

more CP and stronger EP events, we have used cli-

mate model simulations from CMIP5 and CMIP6 to

investigate how different warming patterns, amounts

of mean warming, and Pacific decadal variability af-

fect El Niño diversity.

We find no overall model agreement on the projected

sign of frequency or intensity changes of EP and CP El

Niño events in either CMIP5 or CMIP6 models. A

similar number of models indicate positive changes as

negative changes in El Niño frequency and intensity.

The lack of intermodel agreement of projected El Niño
changes persists, even when considering a subset of

better performing models. Although only based on 10

new models from CMIP6 there is preliminary evidence

that more CMIP6 models show an increase in the ratio

of El Niño event frequencies (CP/EP) compared to the

previous generation of CMIP5 models.

We find that the rate of temperature increase as a proxy

for the warming rate of a model is not a predictor of pro-

jected El Niño changes. Models that simulate greater fu-

ture warming do not show consistently stronger changes

nor agreement on the sign of changes compared to models

that simulate less future warming. However, models with a

La Niña–like mean-state warming show a tendency to-

ward more EP and less CP events as a response to an-

thropogenic forcing. The robustness of this result is

limited by the fact that only 5models show aLaNiña–like
mean-state response to warming. Future research could

investigate the La Niña–like warming models in more

detail and make use of a larger set of CMIP6 models to

reduce uncertainty associated with the current small

sample of La Niña–like warming models.

In addition to mean-state changes, we find that re-

sponses to low-frequency variability such as the PDV

can potentially contribute to frequency changes of El

Niño. All models simulate an increase in the number of

EP and CP El Niño events during PDV positive phases

and a reduction during PDV negative phases. The pro-

jected change in El Niño event frequency may depend

on the background PDV state for the periods considered

(Dewitte et al. 2007). The majority of models simulate

stronger CP events during the positive phase of PDV

than its negative phase. Interestingly, the intensity of EP

El Niño events is less determined by low-frequency

phases of the PDV. We conclude that the PDV is more

important for future frequency changes than intensity

changes of El Niño events.

Overall, our analysis of El Niño types in the CMIP

models shows a lack of intermodel agreement of pro-

jected El Niño changes, consistent with previous studies

(Bellenger et al. 2014; Chen et al. 2017; Kim and Yu

2012). Although greatest model agreement was found

for the spatial pattern of EP and CP events (Figs. 5 and

6), most of the models show an overly westward extent

of SSTA pattern along the equator (Taschetto et al.

2014; L’Heureux et al. 2012). Seager et al. (2019) argues

that coupled models misrepresent the response of the

tropical Pacific to anthropogenic warming due to this

cold tongue bias. Although our model evaluation ap-

proach excluded a number of models with an extensive

cold tongue bias, further analysis could focus on only the

best ranked models to avoid biases that potentially alter

El Niño properties (Brown et al. 2013; Graham et al.

2017). In addition, correctly simulated SST variability

can be a driven by the wrong dynamics. For example,

Bayr et al. (2019) has shown that too-weak feedbacks in

CMIP5 models can lead to an error compensation

between the wind–SST feedback and the heat-flux

feedback that results in realistic simulated SST vari-

ability for the wrong physical reasoning. Possible re-

maining biases such as thermocline variations and

zonal advection could also explain why overall EP El

Niño SST patterns are better captured by the simu-

lations than the CP El Niño patterns.

The role of biases can also play a crucial role for the

identification of El Niño events itself. The classification

approach provides a reliable framework to identify the

different types of El Niño events in climate model sim-

ulations but also relies on the assumption that models

adequately represent ENSO variability. Alternative ap-

proaches adapt to the model biases by following the loca-

tion of anomaly centers as done by Cai et al. (2018). This

bears the risk of includingweakor false events simulatedby

models that do not adequately represent ENSO variability

and the physical processes responsible for ENSO diversity.

A comparisonof results basedon such adaptive approaches

versus the nonadaptive approach used in this study could

be valuable. We also argue that the objective method ap-

plied in this study to identify and classify El Niño events

based on their observed spatial and temporal characteris-

tics enables a direct comparison of palaeoreconstructions,

instrumental records, and climate models.

Furthermore, our study has only considered surface

conditions in the tropical Pacific. Coupled ocean and

atmosphere processes including equatorial wind anom-

alies (Chen et al. 2015), zonal advection (Yeh et al.

2009), and shifts of convection centers (Stuecker et al.

2013) are known to be important to El Niño diversity

(Hu and Fedorov 2018). Future work could include at-

mospheric circulation and oceanic processes and vari-

ables to reduce uncertainties.
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The response of El Niño diversity to increasing green-

house gases remains uncertain based on the lack of model

agreement. Improvements in model biases and represen-

tation of El Niño diversity from previous CMIP phases

(AchutaRao and Sperber 2006; Bellenger et al. 2014) may

be promising, but based on the available CMIP6 models

considered in this study, no dramatic improvement in

the representation of ENSO properties is evident.

Some CMIP6 models examined exhibit persistent

biases in seasonality and overestimate SST variability,

although the new models show no secondary peak in

SST variability in the zonal direction based on the

small sample of available models.

The role of differentiated zonal SST warming was

found to be particularly important for frequency changes.

La Niña–like warming models project fewer CP events

and more EP events in the future. The reverse for El

Niño–like warming models is less clear. Therefore, only

models with an El Niño–like warming response to an-

thropogenic warming appear to be consistent with the

recent increase of observed CP frequency. In light of

current debates onElNiño–likewarming or LaNiña–like
warming trends (Lian et al. 2018; Seager et al. 2019) and

based on this study, increased CP events would be ex-

pected to be accompanied by a weakening of the tropical

zonal SST gradient consistent with some previous studies

(Vecchi et al. 2006). Nevertheless, a high degree of in-

ternal variability and a late emergence of mean-state

changes in terms of SST trends toward the end of the

simulation period may explain differences between El

Niño–like models (Coats and Karnauskas 2017).

The impact of decadal-scale background-state changes

is found to influence both intensity and frequency

changes to a large degree. Despite the known short-

comings of climate models to adequately reflect low-

frequency variability in their simulations (Henley et al.

2017), we found ENSO multidecadal variability to be

closely linked to the occurrence frequency of El Niño
events. The number of EP and CP El Niño events is

higher during PDV positive phases (appendix B) along

with the intensity of CP events. Interestingly the inten-

sity of EP events is less defined by the decadal back-

ground state according to the CMIP models. Future

work will need to address the interplay of mean-state

warming patterns and decadal-scale changes in El Niño
diversity in greater detail and aim to separate internal

variability and responses to external forcing such vol-

canic forcing, which can be linked to ENSO events.
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APPENDIX A

Seasonal Phase Locking

We evaluate the CMIP5 and CMIP6 models (listed in

Table A1) for a correct representation of ENSO’s sea-

sonal phase locking. The strongest variability of Niño-3
and Niño-4, measured by the standard deviation

(StdDEV) during austral spring and summer (DJF), has

been used as a proxy of seasonal phase locking. In addi-

tion, minimum variability during austral autumn (AMJ)

can be an important characteristic of the seasonality of

ENSO. We therefore follow the approach by Bellenger

et al. (2014) adapted by Wengel (2018) and calculate the

PLI for Niño-3 and Niño indices:

PLI5
StdDEV(SSTA

Niño)DJF

StdDEV(SSTA
Niño)AMJ

: (A1)

Here we show a different method to quantify the sea-

sonal phase locking in models. Figure A1 shows the PLI

for the Niño-4 (Fig. A1a) and Niño-3 (Fig. A1b) indices.

Compared to the observations most models show a

weaker phase locking than observed. Extreme strong

and weak seasonal phase locking in the Niño-3 region is

found in CMCC-CMS, CSIRO-Mk3.6-0, IPSL-CM5A-

MR, CanESM5, and IPSL-CM6A-LR. Similar to the

maximum variability approach, these models have not

been included in further analysis.

APPENDIX B

Pacific Decadal Variability

The recent tendency toward more CP El Niño events

has been suggested to be linked to a shift of PDV (Hu

et al. 2013; Guan and McPhaden 2016; Lübbecke and

McPhaden 2014). Here we show the occurrence of EP
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TABLE A1. Overview CMIP5 and CMIP6 models. Available control simulations from the CMIP project that are considered in this study.

Abbr. Model Tier Center Reference

Aa ACCESS1.0 ACC Commonwealth Scientific and Industrial

Research Organization and Bureau of

Meteorology, Australia

Bi et al. (2013)

Ab ACCESS1.3 ACC Commonwealth Scientific and Industrial

Research Organization and Bureau of

Meteorology, Australia

Bi et al. (2013)

Bb BCC-CSM1.1-M BCC Beijing Climate Center, China

Meteorological Administration, China

Wu et al. (2008)

Ba BCC-CSM1.1 BCC Beijing Climate Center, China

Meteorological Administration, China

Wu et al. (2008)

C BNU-ESM BNU Beijing Normal University, China Ji et al. (2014)

D CCSM4 CCS National Center for Atmospheric

Research (NCAR), United States

Gent et al. (2011)

Ea CESM1-BGC CES National Science Foundation/

Department of Energy NCAR, United

States

Long et al. (2013)

Eb CESM1-CAM5 CES National Science Foundation/

Department of Energy NCAR, United

States

Meehl et al. (2013)

Ed CESM1-FASTCHEM CES National Science Foundation/

Department of Energy NCAR, United

States

Meehl et al. (2013)

Ee CESM1-WACCM CES National Science Foundation/

Department of Energy NCAR, United

States

Meehl et al. (2013)

Fc CMCC-CMS CMC Centro Euro-Mediterraneo per i

Cambiamenti, Italy

Fogli et al. (2009)

Fb CMCC-CM CMC Centro Euro-Mediterraneo per i

Cambiamenti, Italy

Fogli et al. (2009)

Ga CNRM-CM5 CNR Centre National de Recherches

Meteorologiques, Météo-France,
France

Voldoire et al. (2012)

Ha CSIRO-Mk3.6-0 CSI Commonwealth Scientific and Industrial

Research Organization, Australia

Rotstayn et al. (2012)

Hb CSIRO-Mk3L-1.2 CSI Commonwealth Scientific and Industrial

Research Organization, Australia

Rotstayn et al. (2012)

I CanESM2 Can Canadian Centre for Climate Modeling

and Analysis, Canada

Arora et al. (2011)

Ka FGOALS-g2 FGO Institute of Atmospheric Physics, Chinese

Academy of Sciences, China

Bao et al. (2013)

Kb FGOALS-s2 FGO Institute of Atmospheric Physics, Chinese

Academy of Sciences, China

Bao et al. (2013)

L FIO-ESM FIO First Institute of Oceanography-Earth

System Model, China

Qiao et al. (2013)

Mb GFDL-CM3 GFD Geophysical Fluid Dynamics Laboratory,

United States

Donner et al. (2011)

Mc GFDL-ESM2G GFD Geophysical Fluid Dynamics Laboratory,

United States

Dunne et al. (2012)

Md GFDL-ESM2M GFD Geophysical Fluid Dynamics Laboratory,

United States

Dunne et al. (2012)

Na GISS-E2-H GIS Goddard Institute for Space Studies,

United States

Miller et al. (2014)

Nc GISS-E2-R GIS Goddard Institute for Space Studies,

United States

Miller et al. (2014)

Nc GISS-E2-R GIS Goddard Institute for Space Studies,

United States

Miller et al. (2014)

Nc GISS-E2-R GIS Goddard Institute for Space Studies,

United States

Miller et al. (2014)
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and CP El Niño events and occurrence frequency in

conjunction with the different phases of PDV (Fig. B1). As

most records of ElNiño variability often cover the later part
of the instrumental period (starting in the 1950s and 1970s),

only a limited number of PDV phases have been assessed.

We show details on past El Niño event occurrence

and occurrence frequencies during different observed PDV

phases following the events identified in Freund et al. (2019).

Similar to the instrumental studies, the strongest increase of

CP events has occurred during a PDV negative phase after

the year 1999. Nevertheless, on average both EP and CP

events occurmore often during PDVpositive phases. At the

same time, the frequencyofCPevents has started to increase

from the 1980s during a positive PDV phase and continued

to increase during the following negative PDV phase.

However, it should be noted that both the estimate of

PDV based on the TPI index (Henley et al. 2015) and

El Niño events are derived from the monthly sea sur-

face temperatures HadISST v.1.1 (Rayner et al. 2003)

dataset, which could be less reliable before 1920.

TABLE A1. (Continued)

Abbr. Model Tier Center Reference

Oc HadGEM2-CC Had Met Office Hadley Centre, United

Kingdom

Collins et al. (2011)

Od HadGEM2-ES Had Met Office Hadley Centre, United

Kingdom

Collins et al. (2011)

P INMCM4 INM Institute for Numerical Mathematics,

Russia

Volodin et al. (2010)

Qa IPSL-CM5A-LR IPS Institut Pierre-Simon Laplace, France Dufresne et al. (2013)

Qb IPSL-CM5A-MR IPS Institut Pierre-Simon Laplace, France Dufresne et al. (2013)

Qc IPSL-CM5B-LR IPS Institut Pierre-Simon Laplace, France Dufresne et al. (2013)

Ra MIROC-ESM MIR Atmosphere and Ocean Research

Institute (AORI), National Institute for

Environmental Studies (NIES), Japan

Agency for Marine-Earth Science and

Technology (JAMSTEC), Japan

Watanabe et al. (2011)

Rc MIROC4h MIR AORI, NIES, JAMSTEC, Japan Sakamoto et al. (2012)

Rd MIROC5 MIR AORI, NIES, JAMSTEC, Japan Watanabe et al. (2010)

Sa MPI-ESM-LR MPI Max Planck Institute for Meteorology,

Germany

Giorgetta et al. (2013)

Sb MPI-ESM-MR MPI Max Planck Institute for Meteorology,

Germany

Giorgetta et al. (2013)

Sc MPI-ESM-P MPI Max Planck Institute for Meteorology,

Germany

Giorgetta et al. (2013)

Ta MRI-CGCM3 MRI Meteorological Research Institute, Japan Yukimoto et al. (2012)

Ub NorESM1-ME Nor Norwegian Climate Centre, Norway Bentsen et al. (2013)

Ua NorESM1-M Nor Norwegian Climate Centre, Norway Bentsen et al. (2013)

B6 BCC-CSM2-MR BCC Beijing Climate Center, China

Meteorological Administration, China

Wu et al. (2008)

W6 CAMS-CSM1.0 CAM Max Planck Institute for Meteorology,

Germany

Roeckner et al. (2003)

E6 CESM2 CES National Science Foundation/

Department of Energy, NCAR, United

States

Meehl et al. (2013)

G6 CNRM-CM6.1 CNR Centre National de Recherches

Meteorologiques, Météo-France,
France

Voldoire et al. (2012)

I6 CanESM5 Can Canadian Centre for Climate Modeling

and Analysis, Canada

Arora et al. (2011)

M6 GFDL-CM4 GFD Geophysical Fluid Dynamics Laboratory,

United States

Dunne et al. (2012)

Q6 IPSL-CM6A-LR IPS Institut Pierre-Simon Laplace, France Dufresne et al. (2013)

R6 MIROC6 MIR AORI, NIES, JAMSTEC, Japan Watanabe et al. (2011)

T6 MRI-ESM2.0 MRI Meteorological Research Institute, Japan Yukimoto et al. (2012)

O6 UKESM1.0-LL UKE Met Office Hadley Centre, United

Kingdom

Collins et al. (2011)
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